Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (4): 639.doi: 10.7503/cjcu20190687
Previous Articles Next Articles
HE Xiaoke1,LI Xiaoyun3,WANG Zhao1,*(),HU Nian1,DENG Zhao1,CHEN Lihua1,SU Baolian1,2,*(
)
Received:
2019-12-18
Online:
2020-04-10
Published:
2020-01-17
Contact:
Zhao WANG,Baolian SU
E-mail:zhao.wang@whut.edu.cn;bao-lian.su@unamur.be
Supported by:
CLC Number:
TrendMD:
HE Xiaoke, LI Xiaoyun, WANG Zhao, HU Nian, DENG Zhao, CHEN Lihua, SU Baolian. Self-reduction for the Synthesis of Co Supported on Hierarchically Porous Carbon for Selective Hydrogenation Reaction †[J]. Chem. J. Chinese Universities, 2020, 41(4): 639.
Fig.1 PXRD and simulated XRD patterns(A), SEM image(B), the N2 adsorption-desorption isotherms(C) and TGA-DSC curves(D) of ZIF-67Inset of (C): the corresponding pore size distribution curve of ZIF-67.
Sample | Pore size/nm | ||||
---|---|---|---|---|---|
ZIF-67 | 1755 | 1728 | 0.72 | 0.70 | 1.00, 1.48 |
Co-N/C-550 | 185 | 175 | 0.14 | 0.07 | 0.34, 0.47 |
Co-N/C-600 | 322 | 284 | 0.14 | 0.08 | 0.34, 0.47, 1.76, 3.90 |
Co-N/C-700 | 321 | 214 | 0.19 | 0.11 | 0.47, 1.57, 3.90 |
Co-N/C-800 | 313 | 147 | 0.21 | 0.06 | 0.59, 1.86, 4.00 |
Sample | Pore size/nm | ||||
---|---|---|---|---|---|
ZIF-67 | 1755 | 1728 | 0.72 | 0.70 | 1.00, 1.48 |
Co-N/C-550 | 185 | 175 | 0.14 | 0.07 | 0.34, 0.47 |
Co-N/C-600 | 322 | 284 | 0.14 | 0.08 | 0.34, 0.47, 1.76, 3.90 |
Co-N/C-700 | 321 | 214 | 0.19 | 0.11 | 0.47, 1.57, 3.90 |
Co-N/C-800 | 313 | 147 | 0.21 | 0.06 | 0.59, 1.86, 4.00 |
Fig.5 Evolution of 1,3-butadiene conversion with the increase of reaction temperature(A) and selectivity to butenes with the butadiene conversion(B) of Co-N/C-T catalysts
[19] | Wang W. F., Qin S., Zhang R. R., Zhou P. P., Yang Q. H., Chen T. Y., Chem. J. Chinese Universities, 2019, 40 9), 1979— 1987 |
( 王文峰,秦山,张荣荣,周盼盼,杨庆华,陈天云.高等学校化学学报, 2019, 40(9), 1979— 1987) | |
[20] | Chen Y., Li X., Nisa M. U., Lv J., Li Z ., Fuel, 2019, 241, 802— 812 |
[21] | Ma W., Wang N., Fan Y., Tong T., Han X., Du Y., Chem. Eng. J., 2018, 336, 721— 731 |
[22] | Yin P. Q., Yao T., Wu Y., Zheng L. R., Lin Y., Liu W., Ju H. X., Zhu J. F., Hong X., Deng Z. X., Zhou G., Wei S. Q., Li Y. D., Angew. Chem. Int. Ed., 2016, 55( 36), 10800— 10805 |
[23] | Xu D., Xiao S. S., Wu P., Pan Y., Chen L. H., Su B. L., Xue M., Qiu S. L., Chem. J. Chinese Universities, 2018, 39 1), 19— 24 |
( 徐丹,肖珊珊,吴攀,潘莹,陈丽华,苏宝连,薛铭,裘式纶.高等学校化学学报, 2018, 39(1), 19— 24) | |
[24] | Jiang Y., Liu G., Wu S., Zhang X., Dai X., Sheng Q., Wang Y., Wang H., Micropor. Mesopor. Mat., 2019, 288, 22070— 22076 |
[25] | Liang Q., Jin H., Wang Z., Xiong Y., Yuan S., Zeng X., He D., Mu S., Nano Energy, 2019, 57, 746— 752 |
[26] | Hugon A., Delannoy L., Louis C., Gold. Bull., 2009, 42( 4), 310— 320 |
[1] | Yang B., Burch R., Hardacre C., Hu P., Hughes P., Surf. Sci., 2016, 646, 45— 49 |
[2] | Lv C. Q., Liu J. H., Guo Y., Wang G. C., Appl. Surf. Sci., 2019, 466, 946— 955 |
[27] | Bennedsen N. R., Kramer S., Mielby J. J., Kegnæs S., Catal. Sci. Technol., 2018, 8( 9), 2434— 2440 |
[28] | Lin K. Y., Chang H. A., Chen R. C ., Chemosphere, 2015, 130, 66— 72 |
[3] | Zhang X., Xu B. Q., Chem. J. Chinese Universities, 2005, 26 1), 106— 110 |
( 张鑫,徐柏庆.高等学校化学学报, 2005, 26(1), 106— 110) | |
[29] | Yang L. L., Yu L., Sun M., Gao C., Catal. Commun., 2014, 54, 86— 90 |
[30] | Ning L., Ping M. C., Hua Z. C., Yong Y., Wang L. Y., J. Solid State Chem., 2019, 47( 4), 429— 437 |
[4] | Decarolis D., Lezcano-Gonzalez I., Gianolio D., Beale A. M., Top. Catal., 2018, 61( 3), 162— 174 |
[5] | Ahn I. Y., Kim W. J., Moon S. H., Appl. Catal. A, 2006, 308, 75— 81 |
[6] | Hou R. J., Porosoff M. D., Chen J. G., Wang T. F., Appl. Catal. A, 2015, 490, 17— 23 |
[7] | Lee D. C., Kim J. H., Kim W. J., Kang J. H., Moon S. H., Appl. Catal. A, 2003, 244( 1), 83— 91 |
[31] | Torad N. L., Salunkhe R. R., Li Y., Hamoudi H., Imura M., Sakka Y., Hu C. C., Yamauchi Y ., Chemistry, 2014, 20( 26), 7895— 7900 |
[32] | Bai C. H., Li A. Q., Yao X. F., Liu H., Li Y. W., Green Chem., 2016, 18( 4), 1061— 1069 |
[8] | Studt F., Abild-Pedersen F., Bligaard T., Sorensen R. Z., Christensen C. H., Norskov J. K ., Science, 2008, 320( 5881), 1320— 1322 |
[9] | Dai Y., Jiang C., Xu M., Bian B., Lu D., Yang Y., Appl. Catal. A, 2019, 580, 158— 166 |
[33] | Pan Y., Xue M., Chen M., Fang Q., Zhu L., Valtchev V., Qiu S., Inorg. Chem. Front., 2016, 3( 9), 1112— 1118 |
[34] | Song J. P., Wu L., Dong W. D., Li C. F., Chen L. H., Dai X., Li C., Chen H., Zou W., Yu W. B., Hu Z. Y., Liu J., Wang H. E., Li Y., Su B. L ., Nanoscale, 2019, 11( 14), 6970— 6981 |
[10] | Wang Z., Brouri D., Casale S., Delannoy L., Louis C., J. Catal., 2016, 340, 95— 106 |
[11] | Wang Z., Wang G., Louis C., Delannoy L., J. Catal., 2017, 347, 185— 196 |
[35] | Zhang W., Jiang X., Wang X., Kaneti Y. V., Chen Y., Liu J., Jiang J. S., Yamauchi Y., Hu M., Angew. Chem. Int. Ed., 2017, 56( 29), 8435— 8440 |
[36] | Torad N. L., Hu M., Ishihara S., Sukegawa H., Belik A. A., Imura M., Ariga K., Sakka Y., Yamauchi Y ., Small, 2014, 10( 10), 2096— 2107 |
[12] | Zhang J. J., Cui F., Shao Q., Xu L. X., Cui T. Y., Chem. J. Chinese Universities, 2016, 37 10), 1876— 1881 |
( 张佳佳,崔放,邵青,徐林煦,崔铁钰.高等学校化学学报, 2016, 37(10), 1876— 1881) | |
[37] | Yusran Y., Xu D., Fang Q., Zhang D., Qiu S., Micropor. Mesopor. Mat., 2017, 241, 346— 354 |
[38] | Zhang W. M., Yao X. Y., Zhou S. N., Li X. W., Li L., Yu Z., Gu L ., Small, 2018, 14( 24), 423— 431 |
[39] | Wu P., Chen L. H., Xiao S. S., Yu S., Wang Z., Li Y., Su B. L ., Nanoscale, 2018, 10( 25), 11861— 11868 |
[40] | Stammbach M. R., Thomas D. J., Trimm D. L., Wainwright M. S., Appl. Catal., 1990, 58, 209— 217 |
[13] | Ruan L. N., Pei A., Zhang H., Zheng T., Zhu L. H., Industrial Catalysis, 2019, 27 9), 1008— 1143 |
( 阮露娜,裴安,张欢,郑拓,朱丽华.工业催化, 2019, 27(9), 1008— 1143) | |
[14] | Murugesan K., Senthamarai T., Alshammari A. S., Altamimi R. M., Kreyenschulte C., Pohl M. M., Lund H., Jagadeesh R. V., Beller M., ACS Catal., 2019, 9( 9), 8581— 8591 |
[15] | Yang J., Zhang F. J., Lu H. Y., Hong X., Jiang H. L., Wu Y., Li Y. D ., Angew. Chem. Int. Ed. Engl., 2015, 54( 37), 10889— 10893 |
[41] | Ossipoff N. J., Cant N. W., J. Catal., 1994, 148, 125— 133 |
[42] | Yan H., Cheng H., Yi H., Lin Y., Yao T., Wang C., Li J., Wei S., Lu J., J. Am. Chem. Soc., 2015, 137( 33), 10484— 10487 |
[16] | Kalenik Z., Ladna B., Wolf E. E., Fehlner T. P., Chem. Mater., 1993, 5, 1247— 1252 |
[17] | Banares M. A., Dauphin L., Calvo-perez V., Fehlner T. P., Wolf E. E., J. Catal., 1995, 152, 396— 409 |
[18] | Kong W., Li J., Chen Y., Ren Y., Guo Y., Niu S., Yang Y., Appl. Surf. Sci., 2018, 437, 161— 168 |
[43] | Yi H., Du H. Y., Hu Y. L., Yan H., Jiang H. L., Lu J. L., ACS Catal., 2015, 5( 5), 2735— 2739 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[6] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[7] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[8] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[9] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[10] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[11] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[12] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[13] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[14] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[15] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||