Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (1): 20230401.doi: 10.7503/cjcu20230401
• Physical Chemistry • Previous Articles Next Articles
TONG Dayin1,2, ZHAO Yaolin1(), WANG Yuqi1, HAN Zitong1, WANG Jie1, ZHANG Jun1, YU Chenxi1
Received:
2023-09-07
Online:
2024-01-10
Published:
2023-11-23
Contact:
ZHAO Yaolin
E-mail:zhaoyaolin@mail.xjtu.edu.cn
Supported by:
CLC Number:
TrendMD:
TONG Dayin, ZHAO Yaolin, WANG Yuqi, HAN Zitong, WANG Jie, ZHANG Jun, YU Chenxi. Theoretical Investigation of Volatile Iodine Adsorption onto COF-103[J]. Chem. J. Chinese Universities, 2024, 45(1): 20230401.
Site | Eads/eV | ΔEdisp/eV(proportion) | d(I—I)/nm | d(I—C)/nm | d(I—B)/nm | d(I—O)/nm | d(I—Si)/nm |
---|---|---|---|---|---|---|---|
S | -0.70 | -0.32(46%) | 0.269 | 0.337/0.425 | 0.452/0.575 | ||
PBC | -0.66 | -0.29(44%) | 0.269 | 0.398 | 0.382 | 0.397/0.399 | |
PBO | -0.63 | -0.26(41%) | 0.268 | 0.369 | 0.387 | ||
PCC | -0.63 | -0.29(46%) | 0.268 | 0.397/0.399/0.405 | |||
VB | -0.69 | -0.22(32%) | 0.271 | 0.315 | 0.335 | 0.383/0.387 | |
VC1 | -0.72 | -0.25(35%) | 0.271 | 0.321/0.331/0.365 | 0.367 | ||
VC2 | -0.74 | -0.27(36%) | 0.271 | 0.318/0.322 | |||
VO | -0.61 | -0.21(34%) | 0.269 | 0.360/0.366 | 0.324 |
Table 1 Adsorption energies(Eads), dispersion energy(ΔEdisp) and structural parameters(d) of stable adsorption configurations at different sites
Site | Eads/eV | ΔEdisp/eV(proportion) | d(I—I)/nm | d(I—C)/nm | d(I—B)/nm | d(I—O)/nm | d(I—Si)/nm |
---|---|---|---|---|---|---|---|
S | -0.70 | -0.32(46%) | 0.269 | 0.337/0.425 | 0.452/0.575 | ||
PBC | -0.66 | -0.29(44%) | 0.269 | 0.398 | 0.382 | 0.397/0.399 | |
PBO | -0.63 | -0.26(41%) | 0.268 | 0.369 | 0.387 | ||
PCC | -0.63 | -0.29(46%) | 0.268 | 0.397/0.399/0.405 | |||
VB | -0.69 | -0.22(32%) | 0.271 | 0.315 | 0.335 | 0.383/0.387 | |
VC1 | -0.72 | -0.25(35%) | 0.271 | 0.321/0.331/0.365 | 0.367 | ||
VC2 | -0.74 | -0.27(36%) | 0.271 | 0.318/0.322 | |||
VO | -0.61 | -0.21(34%) | 0.269 | 0.360/0.366 | 0.324 |
Site | Qads(I1)/e | Qads(I2)/e | ΔQ(I2)/e | ΔQ(COF)/e |
---|---|---|---|---|
S | 6.99 | 7.03 | 0.02 | -0.02 |
VB | 6.98 | 7.07 | 0.05 | -0.05 |
VC1 | 6.98 | 7.07 | 0.05 | -0.05 |
VC2 | 6.99 | 7.08 | 0.07 | -0.07 |
Table 2 Bader charge results(Q and ΔQ) at favorable adsorption sites
Site | Qads(I1)/e | Qads(I2)/e | ΔQ(I2)/e | ΔQ(COF)/e |
---|---|---|---|---|
S | 6.99 | 7.03 | 0.02 | -0.02 |
VB | 6.98 | 7.07 | 0.05 | -0.05 |
VC1 | 6.98 | 7.07 | 0.05 | -0.05 |
VC2 | 6.99 | 7.08 | 0.07 | -0.07 |
Contaminant | Eads(B3O3 ring)/eV | Eads(Phenyl ring)/eV | Contaminant | Eads(B3O3 ring)/eV | Eads(Phenyl ring)/eV |
---|---|---|---|---|---|
C6H6 | -0.74 | -0.72 | C2H6 | -0.56 | -0.59 |
C2H5OH | -0.65 | -0.60 | Cl2 | -0.55 | -0.56 |
H2O | -0.57 | -0.61 | NO | -0.48 | -0.54 |
CH3OH | -0.61 | -0.56 | CO | -0.49 | -0.52 |
CH3Cl | -0.58 | -0.60 | CH4 | -0.52 | -0.50 |
Table 3 Adsorption energies(Eads) of contaminants at phenyl and B3O3 ring site on COF-103
Contaminant | Eads(B3O3 ring)/eV | Eads(Phenyl ring)/eV | Contaminant | Eads(B3O3 ring)/eV | Eads(Phenyl ring)/eV |
---|---|---|---|---|---|
C6H6 | -0.74 | -0.72 | C2H6 | -0.56 | -0.59 |
C2H5OH | -0.65 | -0.60 | Cl2 | -0.55 | -0.56 |
H2O | -0.57 | -0.61 | NO | -0.48 | -0.54 |
CH3OH | -0.61 | -0.56 | CO | -0.49 | -0.52 |
CH3Cl | -0.58 | -0.60 | CH4 | -0.52 | -0.50 |
1 | Schneider M., Froggatt A., World Nuclear Industry Status Report 2022, A Mycle Schneider Consulting Project, Paris, 2022, 38—39 |
2 | Grossman C. M., Nussbaum R. H., Nussbaum F. D., Arch. Environ. Health, 2003, 58(5), 267—274 |
3 | Grossman C. M., Nussbaum R. H., Nussbaum F. D., Arch. Environ. Health, 2002, 57(1), 9—15 |
4 | Xie W., Cui D., Zhang S. R., Xu Y. H., Jiang D. L., Mater. Horiz., 2019, 6(8), 1571—1595 |
5 | Riley B. J., Vienna J. D., Strachan D. M., McCloy J. S., Jerden J. L., J. Nucl. Mater., 2016, 470, 307—326 |
6 | Huve J., Ryzhikov A., Nouali H., Lalia V., Augé G., Daou T. J., RSC Adv., 2018, 8(51), 29248—29273 |
7 | Li L., Li P. F., Wang B., Chem. J. Chinese Universities, 2020, 41(9), 1917—1932 |
李丽, 李鹏飞, 王博. 高等学校化学学报, 2020, 41(9), 1917—1932 | |
8 | Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120(16), 8814—8933 |
9 | Wang J. L., Zhuang S. T., Coord. Chem. Rev., 2019, 400, 213046 |
10 | He L. W., Chen L., Dong X. L., Zhang S. T., Zhang M. X., Dai X., Liu X. J., Lin P., Li K. F., Chen C. L., Pan T. T., Ma F. Y., Chen J. C., Yuan M. J., Zhang Y. G., Chen L., Zhou R. H., Han Y., Chai Z. F., Wang S. A., Chem, 2021, 7(3), 699—714 |
11 | Wang P., Xu Q., Li Z. P., Jiang W. M., Jiang Q. H., Jiang D. L., Adv. Mater., 2018, 30(29), 1801991 |
12 | Yin Z. J., Xu S. Q., Zhan T. G., Qi Q. Y., Wu Z. Q., Zhao X., Chem. Commun., 2017, 53(53), 7266—7269 |
13 | Li J. H., Zhang H. X., Zhang L. Y., Wang K., Wang Z. K., Liu G. Y., Zhao Y. L., Zeng Y. F., J. Mater. Chem. A, 2020, 8(19), 9523—9527 |
14 | Zhang L. Y., Li J. H., Zhang H. X., Liu Y., Cui Y. M., Jin F. C., Wang K., Liu G. Y., Zhao Y. L., Zeng Y. F., Chem. Commun., 2021, 57(45), 5558—5561 |
15 | Pan X. W., Qin X. H., Zhang Q. H., Ge Y. S., Ke H. Z., Cheng G. E., Microporous Mesoporous Mater., 2020, 296, 109990 |
16 | Zhai L. P., Han D. D., Dong J. H., Jiang W. Q., Nie R. M., Yang X. B., Luo X. L., Li Z. P., Macromol. Rapid Commun., 2021, 42(13), 2100032 |
17 | Xu G. J., Chang J. H., Fang Q. R., Chem. J. Chinese Universities, 2020, 41(12), 2667—2672 |
徐国杰, 常建红, 方千荣. 高等学校化学学报, 2020, 41(12), 2667—2672 | |
18 | Lan Y. S., Tong M. M., Yang Q. Y., Zhong C. L., CrystEngComm, 2017, 19(33), 4920—4926 |
19 | Tong D. Y., Zhao Y. L., Chen Z. C., Wang Y. Q., Jia Z. Q., Nie X. M., Xiao S. T., Phys. Chem. Chem. Phys., 2021, 23(44), 25365—25373 |
20 | Jabraoui H., Hessou E. P., Chibani S., Cantrel L., Lebègue S., Badawi M., Appl. Surf. Sci., 2019, 485, 56—63 |
21 | Chebbi M., Chibani S., Paul J. F., Cantrel L., Badawi M., Microporous Mesoporous Mater., 2017, 239, 111—122 |
22 | Auvinen A., Zilliacus R., Jokiniemi J., Nucl. Technol., 2005, 149(2), 232—241 |
23 | Bosland L., Dickinson S., Glowa G. A., Herranz L. E., Kim H. C., Powers D. A., Salay M., Tietze S., Ann. Nucl. Energy, 2014, 74, 184—199 |
24 | Yuan Y., Dong X. Q., Chen Y. F., Zhang M. H., Phys. Chem. Chem. Phys., 2016, 18(33), 23246—23256 |
25 | Tong D. Y., Zhao Y. L., Wang Y. Q., Nie S. W., Xiao S. T., Comput. Mater. Sci., 2023, 229, 112417 |
26 | Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54(16), 11169—11186 |
27 | Kresse G., Hafner J., J. Phys.: Condens.Matter, 1994, 6(40), 8245—8257 |
28 | Kresse G., Hafner J., Phys. Rev. B, 1994, 49(20), 14251—14269 |
29 | Kresse G., Hafner J., Phys. Rev. B, 1993, 47(1), 558—561 |
30 | Kresse G., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59(3), 1758—1775 |
31 | Blöchl P. E., Phys. Rev. B, 1994, 50(24), 17953—17979 |
32 | Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865—3868 |
33 | Hessou E. P., Jabraoui H., Khalil I., Dziurla M. A., Badawi M., Appl. Surf. Sci., 2020, 541, 148515 |
34 | Chibani S., Badawi M., Loiseau T., Volkringer C., Cantrel L., Paul J. F., Phys. Chem. Chem. Phys., 2018, 20(24), 16770—16776 |
35 | Chibani S., Chiter F., Cantrel L., Paul J. F., J. Phys. Chem. C, 2017, 121(45), 25283—25291 |
36 | Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132(15), 154104 |
37 | Tong M. M., Lan Y. S., Yang Q. Y., Zhong C. L., Chem. Eng. Sci., 2017, 168, 456—464 |
38 | Dubbeldam D., Calero S., Ellis D. E., Snurr R. Q., Mol. Simul., 2016, 42(2), 81—101 |
39 | Liu Y. L., Hu C. J., Zhao C. C., Comput. Phys. Commun., 2011, 182(5), 1111—1119 |
40 | Chen B., Potoff J. J., Siepmann J. I., J. Phys. Chem. B, 2001, 105(15), 3093—3104 |
41 | Ongari D., Boyd P. G., Barthel S., Witman M., Haranczyk M., Smit B., Langmuir, 2017, 33(51), 14529—14538 |
42 | Willems T. F., Rycroft C. H., Kazi M., Meza J. C., Haranczyk M., Microporous Mesoporous Mater., 2012, 149(1), 134—141 |
43 | El⁃Kaderi H. M., Hunt J. R., Mendoza⁃Cortés J. L., Côté A. P., Taylor R. E., Keeffe M., Yaghi O. M., Science, 2007, 316(5822), 268—272 |
44 | Manz T. A., Limas N. G., RSC Adv., 2016, 6(53), 47771—47801 |
45 | Limas N. G., Manz T. A., RSC Adv., 2016, 6(51), 45727—45747 |
46 | Banerjee D., Chen X., Lobanov S. S., Plonka A. M., Chan X., Daly J. A., Kim T., Thallapally P. K., Parise J. B., ACS Appl. Mater. Interfaces, 2018, 10(13), 10622—10626 |
47 | Tong D. Y., Zhao Y. L., Chen Z. C., Bo T., Nie S. W., Xiao S. T., Microporous Mesoporous Mater., 2021, 317, 111017 |
48 | Haynes W. M., Bruno T. J., Lide D. R., CRC Handbook of Chemistry and Physics, 96th Edition(Internet Version 2016), CRC press/ Taylor and Francis, Boca Raton, Florida, 2016, 949—950 |
49 | Zhou G. D., Duan L. Y., Fundamentals of Structural Chemistry(5th Edition), Peking University Press, Beijing, 2017, 354—357 |
周公度, 段连运. 结构化学基础(第5版), 北京: 北京大学出版社, 2017, 354—357 | |
50 | Tang W., Sanville E., Henkelman G., J. Phys.: Condens.Matter, 2009, 21(8), 084204 |
51 | Sanville E., Kenny S. D., Smith R., Henkelman G., J. Comput. Chem., 2007, 28(5), 899—908 |
52 | Ubaid M., Aziz A., Pujari B. S., New J. Chem., 2021, 45(28), 12647—12654 |
53 | Music D., Schneider J. M., Phys. Rev. B, 2006, 74(17), 174110 |
54 | Wang Y. X., Wang C. L., Zhao M. L., Zhang J. L., Chin. Phys. Lett., 2005, 22(2), 469—471 |
55 | Hebel W., Cottone G., Management Modes for Iodine⁃129, Harwood Academic Publishers, Luxembourg, 1982, 282—283 |
56 | Stull D. R., Ind. Eng. Chem., 1947, 39(4), 517—540 |
57 | Zhang Z. Y., Dong X. L., Yin J., Li Z. G., Li X., Zhang D. L., Pan T. T., Lei Q., Liu X. L., Xie Y. Q., Shui F., Li J. L., Yi M., Yuan J., You Z. F., Zhang L. Y., Chang J. H., Zhang H. B., Li W., Fang Q. R., Li B. Y., Bu X. H., Han Y., J. Am. Chem. Soc., 2022, 144(15), 6821—6829 |
58 | Xie Y. Q., Pan T. T., Lei Q., Chen C. L., Dong X. L., Yuan Y. Y., Maksoud W. A., Zhao L., Cavallo L., Pinnau I., Han Y., Nat. Commun., 2022, 13(1), 2878 |
59 | Chen W., Li M., Peng W. L., Huang L., Zhao C., Acharya D., Liu W. T., Zheng A. M., Green Energy Environ., 2022, 7(2), 296—306 |
60 | Karavias F., Myers A. L., Langmuir, 1991, 7(12), 3118—3126 |
[1] | CAO Shengzhe, HUANG Xin, YANG Zhihong. First-principles Study of Direct Z-scheme In2SSe/Sb Heterostructure as Photocatalyst for Water Splitting [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230145. |
[2] | HU Pingao, ZHANG Qi, ZHANG Huiru. Theoretical Prediction on the Catalytic Effect of Selenium-deficient WSe2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220595. |
[3] | KONG Xiangyu, LIAO Li, LU Canzhong, FANG Qianrong. Application of Covalent Organic Framework-Polyoxometalates Composites in Heterogeneous Catalytic Epoxidation of Olefins [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230282. |
[4] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[5] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[6] | WANG Kaixuan, LI Ziping, CHEN Xianyang, CUI Yong. Synthesis, Structure and Characterization of a Dihydrophenazine Based 3D Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220210. |
[7] | CHEN Mingsu, ZHANG Huiru, ZHANG Qi, LIU Jiaqin, WU Yucheng. First-principles Study on the Catalytic Effect of Co,P co-Doped MoS2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2540. |
[8] | YAN Yanhong, WU Simin, YAN Yilun, TANG Xihao, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang, GU Fenglong. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(3): 956. |
[9] | YAN Yanhong, LI Shuqing, TANG Xihao, ZHENG Shengrun, CAI Songliang, ZHANG Weiguang, GU Fenglong. Cationic Covalent Organic Frameworks for the Enhanced Removal of Non-steroidal Anti-inflammatory Drugs from Water [J]. Chem. J. Chinese Universities, 2021, 42(10): 3091. |
[10] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chem. J. Chinese Universities, 2020, 41(9): 1917. |
[11] | YAN Yilun, HUANG Xiaoling, FAN Jun, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang. Synthesis of a β-Ketoenamine-linked Chiral Covalent Organic Framework and Its Application in Capillary Gas Chromatography [J]. Chem. J. Chinese Universities, 2020, 41(9): 1996. |
[12] | WANG Yang, WANG Sidi, TANG Shaokun. Synthesis and Characterization of Imine-based Covalent Organic Framework(COF-LZU1) in Supercritical Carbon Dioxide [J]. Chem. J. Chinese Universities, 2020, 41(8): 1792. |
[13] | CHANG Jianhong, XU Guojie, LI Hui, FANG Qianrong. Quinone-based Covalent Organic Frameworks for Efficient Oxygen Evolution Reaction† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1609. |
[14] | LI Shanshan, ZHAO Wenjuan, LI Hui, FANG Qianrong. A Photoresponsive Azobenzene-functionalized Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2020, 41(6): 1384. |
[15] | ZHANG Danwei, WANG Hui, LI Zhanting. Water-soluble Regular Three-dimensional Supramolecular and Covalent Organic Polymers [J]. Chem. J. Chinese Universities, 2020, 41(6): 1139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||