Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (11): 20230268.doi: 10.7503/cjcu20230268
• Physical Chemistry • Previous Articles Next Articles
CHEN Hao1, CHEN Gui2, SONG Dandan1, ZENG Yanhong1, LIU Wenhu3(), ZHANG Ming4(
)
Received:
2023-06-05
Online:
2023-11-10
Published:
2023-08-04
Contact:
LIU Wenhu
E-mail:liuwenhu2023@163.com;ming84122023@163.com
Supported by:
CLC Number:
TrendMD:
CHEN Hao, CHEN Gui, SONG Dandan, ZENG Yanhong, LIU Wenhu, ZHANG Ming. High-performance Cu-ZnO@SiO2 Nano-catalyst for CO2 Hydrogenation to Methanol[J]. Chem. J. Chinese Universities, 2023, 44(11): 20230268.
Sample | SBET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore diameter/nm |
---|---|---|---|
CuO⁃ZnO | 58.5 | 0.10 | 25.9 |
CuO⁃ZnO@SiO2 | 80.2 | 0.13 | 10.2 |
Table 1 Textural properties of the CuO-ZnO and CuO-ZnO@SiO2 catalysts
Sample | SBET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore diameter/nm |
---|---|---|---|
CuO⁃ZnO | 58.5 | 0.10 | 25.9 |
CuO⁃ZnO@SiO2 | 80.2 | 0.13 | 10.2 |
Catalyst | Conversion of CO2(%) | Selectivity of CH3OH(%) | Yield of CH3OH(%) | Ref. |
---|---|---|---|---|
Cu⁃ZnO/SiO2 | 14.1 | 57.2 | 8.1 | [ |
Cu/SiO2 | 5.2 | 79.3 | 4.1 | [ |
Cu⁃ZnO⁃ZrO2⁃SiO2 | 18.5 | 36.3 | 6.7 | [ |
Cu⁃ZnO⁃Al2O3/SiO2 | 20.24 | 27.15 | 5.5 | [ |
Cu⁃ZnO⁃ZrO2⁃SiO2 | 13 | 38.5 | 5 | [ |
Cu@m⁃SiO2 | 10.2 | 26.5 | 2.7 | [ |
Cu/ZnO@m⁃SiO2 | 11.9 | 61.8 | 7.4 | [ |
CuIn@SiO2 | 12.5 | 78.2 | 9.8 | [ |
Cu⁃ZnO@SiO2 | 12.6 | 88.2 | 11.1 | This work |
Table 2 Catalytic performance of Cu-based catalyst modified by SiO2 in CO2 hydrogenation to methanol
Catalyst | Conversion of CO2(%) | Selectivity of CH3OH(%) | Yield of CH3OH(%) | Ref. |
---|---|---|---|---|
Cu⁃ZnO/SiO2 | 14.1 | 57.2 | 8.1 | [ |
Cu/SiO2 | 5.2 | 79.3 | 4.1 | [ |
Cu⁃ZnO⁃ZrO2⁃SiO2 | 18.5 | 36.3 | 6.7 | [ |
Cu⁃ZnO⁃Al2O3/SiO2 | 20.24 | 27.15 | 5.5 | [ |
Cu⁃ZnO⁃ZrO2⁃SiO2 | 13 | 38.5 | 5 | [ |
Cu@m⁃SiO2 | 10.2 | 26.5 | 2.7 | [ |
Cu/ZnO@m⁃SiO2 | 11.9 | 61.8 | 7.4 | [ |
CuIn@SiO2 | 12.5 | 78.2 | 9.8 | [ |
Cu⁃ZnO@SiO2 | 12.6 | 88.2 | 11.1 | This work |
Surface species | Assignment | |
---|---|---|
Bidentate formate(bi⁃HCOO*) | 1352 1571 2938 2989 | νs(O—C—O) νas(O—C—O) ν(CH) δ(CH)+νs(OCO) |
Methoxy(CH3O*) | 1102 2823 2927 | ν(O—C) νs(CH3) νas(CH3) |
CO* | 2084 | ν(C=O) |
Table 3 IR peak assignments of intermediate species over catalyst surface in CO2 hydrogenation
Surface species | Assignment | |
---|---|---|
Bidentate formate(bi⁃HCOO*) | 1352 1571 2938 2989 | νs(O—C—O) νas(O—C—O) ν(CH) δ(CH)+νs(OCO) |
Methoxy(CH3O*) | 1102 2823 2927 | ν(O—C) νs(CH3) νas(CH3) |
CO* | 2084 | ν(C=O) |
1 | Wang H., Fan S., Wang S., Dong M., Qin Z. F., Bin Fan W., Wang J. G., J. Fuel Chem. Technol., 2021, 49(11), 1609—1619 |
2 | Álvarez A., Bansode A., Urakawa A., Bavykina A. V., Wezendonk T. A., Makkee M., Gascon J., Kapteijn F., Chem. Rev., 2017, 117(14), 9804—9838 |
3 | Ye R. P., Ding J., Gong W., Argyle M. D., Zhong Q., Wang Y., Russell C. K., Xu Z., Russell A. G., Li Q., Fan M., Yao Y. G., Nat. Commun., 2019, 10(1), 1—15 |
4 | Kondratenko E. V., Mul G., Baltrusaitis J., Larrazábal G. O., Pérez⁃Ramírez J., Energy Environ. Sci., 2013, 6(11), 3112—3135 |
5 | Wang Y. Y., Liu H. Z., Han B. X., Chem. J. Chinese Universities, 2020, 41(11), 2393—2403 |
王艳燕, 刘会贞, 韩布兴. 高等学校化学学报, 2020, 41(11), 2393-2403 | |
6 | Din I. U., Shaharun M. S., Alotaibi M. A., Alharthi A. I., Naeem A., J. CO2 Util., 2019, 34, 20—33 |
7 | Dang S., Yang H., Gao P., Wang H., Li X., Wei W., Sun Y., Catal. Today, 2019, 330, 61—75 |
8 | Zhong J., Yang X., Wu Z., Liang B., Huang Y., Zhang T., Chem. Soc. Rev., 2020, 49(5), 1385—1413 |
9 | Zhou L. L., Cheng H. Y., Zhao F. Y., Chem. J. Chinese Universities, 2022, 43(7), 20220279 |
周雷雷, 程海洋, 赵凤玉. 高等学校化学学报, 2022, 43(7), 20220279 | |
10 | Rodriguez J. A., Liu P., Stacchiola D. J., Senanayake S. D., White M. G., Chen J. G., ACS Catal., 2015, 5(11), 6696—6706 |
11 | Jiang X., Nie X., Guo X., Song C., Chen J. G., Chem. Rev., 2020, 120(15), 7984—8034 |
12 | Wang J. Y., Zeng C. Y., Wu C. Z., J. Fuel Chem. Technol., 2006, 34(2), 195—199 |
王继元, 曾崇余, 吴昌子, 燃料化学学报(中英文), 2006, 34(2), 195—199 | |
13 | Jia M. Y., Gao W. G., Wang H., Wang Y. H., Appl. Mech. Mater., 2014, 556—562, 117—122 |
14 | Wu J., Luo S., Toyir J., Saito M., Takeuchi M., Watanabe T., Catal. Today, 1998, 45(1—4), 215—220 |
15 | Phongamwong T., Chantaprasertporn U., Witoon T., Numpilai T., Poo⁃arporn Y., Limphirat W., Donphai W., Dittanet P., Chareonpa⁃nich M., Limtrakul J., Chem. Eng. J., 2017, 316, 692—703 |
16 | Jia C. X., Shao J. A., Bai I. X. W., Xiao J. J., Yang H. P., Chen H. P., Chem. Ind. Eng. Pro., 2020, 39(9), 3658—3668 |
贾晨喜, 邵敬爱, 白小薇, 肖建军, 杨海平, 陈汉平, 化工进展. 2020, 39(9), 3658-3668 | |
17 | Dai W. H., Xin Z., CIESC J., 2022, 73(8), 3586—3596 |
戴文华, 辛忠, 化工学报. 2022, 73(8), 3586—3596 | |
18 | Chen K., Yu J., Liu B., Si C., Ban H., Cai W., Li C., Li Z., Fujimoto K., J. Catal., 2019, 372, 163—173 |
19 | Gao P., Li F., Zhang L., Zhao N., Xiao F., Wei W., Zhong L., Sun Y., J. CO2 Util., 2013, 2, 16—23 |
20 | Cui X., Yan W., Yang H., Shi Y., Xue Y., Zhang H., Niu Y., Fan W., Deng T., ACS Sustain. Chem. Eng., 2021, 9, 2661—2672 |
21 | Si C., Ban H., Chen K., Wang X., Cao R., Yi Q., Qin Z., Shi L., Li Z., Cai W., Li C., Appl. Catal. A: Gen., 2020, 594, 117466 |
22 | Liu Y. M., Liu J. T., Liu S. Z., Li J., Gao Z. H., Zuo Z. J., J. CO2 Util., 2017, 20, 59—65 |
23 | Huang C., Wen J., Sun Y., Zhang M., Bao Y., Zhang Y., Liang L., Fu M., Wu J., Ye D., Chen L., Chem. Eng. J., 2019, 374, 221—230 |
24 | Jiang Y., Yang H., Gao P., Li X., Zhang J., Liu H., Wang H., Wei W., Sun Y., J. CO2 Util., 2018, 26, 642—651 |
25 | Yu J., Yang M., Zhang J., Ge Q., Zimina A., Pruessmann T., Zheng L., Grunwaldt J. D., Sun J., ACS Catal., 2020, 10(24), 14694—14706 |
26 | Zhang L., Zhang Y., Chen S., Appl. Catal. A: Gen., 2012, 415/416, 118—123 |
27 | Yang H., Gao P., Zhang C., Zhong L., Li X., Wang S., Wang H., Wei W., Sun Y., Catal. Commun., 2016, 84, 56—60 |
28 | Shi Z., Tan Q., Wu D., AIChE J., 2019, 65(3), 1047—1058 |
29 | Shi Z., Tan Q., Tian C., Pan Y., Sun X., Zhang J., Wu D., J. Catal., 2019, 379, 78—89 |
30 | Wang S. Q., Yang J. H., Zhao N., Xiao F. K., J. Fuel Chem. Technol., 2022, 51(7), 1—7 |
王世强, 杨金海, 赵宁, 肖福魁. 燃料化学学报(中英文), 2022, 51(7), 1—7 | |
31 | Song J., Liu S., Yang C., Wang G., Tian H., jian Zhao Z., Mu R., Gong J., Appl. Catal. B: Environ., 2020, 263, 118367 |
32 | Liu T., Hong X., Liu G., ACS Catal., 2020, 10(1), 93—102 |
[1] | YANG Yingnan, SUN Qiming. Synthesis of EAB Zeolite and Its Application in Methanol-to-olefin Reaction [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230119. |
[2] | FENG Ruiqin, FANG Yun, FAN Ye, XIA Yongmei. Facile Synthesis of Gold Nanoflowers and the Catalytic Reduction of p-Nitrophenol with Sodium Borohydride [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230027. |
[3] | XU Deyi, DING Chaojun, LI Fang, LIU Yueming, HE Mingyuan. P-Modified Deactivated TS-1 as an Efficient Catalyst for Catalytic Cracking of Pentene to Ethene and Propene [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230094. |
[4] | YAO Yixuan, LU Changbo, ZHANG Hongwei, ZHANG Duxin, SHANG Hongyan, TIAN Yuanyu. Catalytic Performance of [Fe] for Regioselective Ring-opening of Epoxides [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230137. |
[5] | HUANG Dingmin, SUN Haotian, WANG Zhenwei, LIU Hao, SU Xianbin. 3-Quinoline Boric Acid as an Efficient Catalyst for the Direct Amidation of Carboxylic Acids at Room Temperature [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230004. |
[6] | ZHU Yingying, YAN Xiaoyu, YU Jing, MAN Wenxin, LIU Feng, ZHOU Ying, MA Xiantao. Catalyst-free and Efficient Synthesis of Disulfanes [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230045. |
[7] | HUANG Jin, GUO Lijun, LI Feng, LI Yang, LI Cuiqin. Preparation and Catalytic Behavior in Ethylene Oligomerization of Nickel Catalyst Supported by Dendritic PAMAM Functionalized Nano-silica [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220778. |
[8] | ZHAO Qian, LI Shang, CHENG Kuangwei, WEN Zhiyong, ZHANG Xiaoyu, YI Shaojie, PAN Mu. Study on Nitrogen-doped PtCo/C Alloy Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230016. |
[9] | NAN Jiang, LIU Shilei, HUANG Guanjie. In(OTf)3-catalyzed Intermolecular [3+2+1] Cyclization of Two Imine Units [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220714. |
[10] | HOU Junying, HOU Chuanyuan, HAO Jianjun, LI Jianchang, WANG Yaya. Fabrication of Copper-doped Porous NiO Heterogeneous Catalyst and Its Application in Aerobic Oxidation of Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230042. |
[11] | BIAN Xuanang, ZHOU Chao, ZHAO Yunxuan, ZHANG Tierui. Light-driven Ammonia Synthesis over Layered-double- hydroxide-derived Ru Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230095. |
[12] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[13] | ZHANG Xiaoyu, QU Gan, XUE Dongping, YAN Wenfu, ZHANG Jianan. Recent Process of Carbon-based Catalysts for the Production of H2O2 by Electrocatalytic Oxygen Reduction: Strategies, Calculation and Practical Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220775. |
[14] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[15] | DU Lei, LIU Zhaoqing. Non-precious Metal Catalysts for Electro-oxidation Upgrading of 5-Hydroxymethy Furfural [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||