Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (7): 20230169.doi: 10.7503/cjcu20230169
• Article • Previous Articles Next Articles
ZHANG Youhui1,2, YANG Na2, DUAN Na2, CHENG Yujun2, YOU Shiyong2, WU Feiyan2(), CHEN Lie2(
)
Received:
2023-04-01
Online:
2023-07-10
Published:
2023-05-05
Contact:
CHEN Lie
E-mail:feiywu@ncu.edu.cn;chenlie@ncu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Youhui, YANG Na, DUAN Na, CHENG Yujun, YOU Shiyong, WU Feiyan, CHEN Lie. End-capped Polymer Donors for Highly-efficient Organic Solar Cells[J]. Chem. J. Chinese Universities, 2023, 44(7): 20230169.
Polymer | Mn | PDI | λmax, sola /nm | λmax, f b /nm | Tdc /℃ | Ego pt/eV | EHOMO/eV | ELUMO/eV |
---|---|---|---|---|---|---|---|---|
PM6 | 38100 | 2.5 | 615 | 624 | 362 | 1.82 | -5.45 | -3.63 |
PM6⁃T⁃EH | 29200 | 2.6 | 616 | 619 | 376 | 1.83 | -5.44 | -3.61 |
PM6⁃2T⁃EH | 26200 | 2.4 | 613 | 619 | 381 | 1.82 | -5.42 | -3.60 |
PM6⁃3T⁃EH | 26400 | 2.6 | 615 | 624 | 396 | 1.82 | -5.48 | -3.66 |
Table 1 Absorption, energy levels and thermal decomposition properties of polymer donors
Polymer | Mn | PDI | λmax, sola /nm | λmax, f b /nm | Tdc /℃ | Ego pt/eV | EHOMO/eV | ELUMO/eV |
---|---|---|---|---|---|---|---|---|
PM6 | 38100 | 2.5 | 615 | 624 | 362 | 1.82 | -5.45 | -3.63 |
PM6⁃T⁃EH | 29200 | 2.6 | 616 | 619 | 376 | 1.83 | -5.44 | -3.61 |
PM6⁃2T⁃EH | 26200 | 2.4 | 613 | 619 | 381 | 1.82 | -5.42 | -3.60 |
PM6⁃3T⁃EH | 26400 | 2.6 | 615 | 624 | 396 | 1.82 | -5.48 | -3.66 |
Active layer | VOC/V | JSC/(mA·cm‒2) | FF(%) | PCE(%) a |
---|---|---|---|---|
PM6∶Y6 | 0.841 | 25.07 | 73.77 | 15.40(15.25) |
PM6⁃T⁃EH∶Y6 | 0.850 | 26.17 | 74.79 | 16.66(16.21) |
PM6⁃2T⁃EH∶Y6 | 0.846 | 25.71 | 71.43 | 15.54(15.20) |
PM6⁃3T⁃EH∶Y6 | 0.833 | 24.95 | 65.05 | 13.50(13.34) |
PM6∶BTP⁃eC9 b | 0.841 | 26.56 | 76.82 | 17.17(16.56) |
PM6⁃T⁃EH∶BTP⁃eC9 b | 0.842 | 26.82 | 77.47 | 17.49(16.67) |
PM6⁃T⁃EH∶BTP⁃eC9 c | 0.844 | 27.55 | 77.51 | 18.02(17.78) |
Table 2 Photovoltaic performance parameters of the OSCs based on polymers∶Y6 and polymers∶BTP-eC9
Active layer | VOC/V | JSC/(mA·cm‒2) | FF(%) | PCE(%) a |
---|---|---|---|---|
PM6∶Y6 | 0.841 | 25.07 | 73.77 | 15.40(15.25) |
PM6⁃T⁃EH∶Y6 | 0.850 | 26.17 | 74.79 | 16.66(16.21) |
PM6⁃2T⁃EH∶Y6 | 0.846 | 25.71 | 71.43 | 15.54(15.20) |
PM6⁃3T⁃EH∶Y6 | 0.833 | 24.95 | 65.05 | 13.50(13.34) |
PM6∶BTP⁃eC9 b | 0.841 | 26.56 | 76.82 | 17.17(16.56) |
PM6⁃T⁃EH∶BTP⁃eC9 b | 0.842 | 26.82 | 77.47 | 17.49(16.67) |
PM6⁃T⁃EH∶BTP⁃eC9 c | 0.844 | 27.55 | 77.51 | 18.02(17.78) |
Film | θWater/(°) | γ/(mN·m-1) | Blend film | χ |
---|---|---|---|---|
PM6 | 104.9 | 20.95 | PM6∶Y6 | 0.147 |
PM6⁃T⁃EH | 105.5 | 19.86 | PM6⁃T⁃EH∶Y6 | 0.247 |
PM6⁃2T⁃EH | 106.9 | 19.04 | PM6⁃2T⁃EH∶Y6 | 0.349 |
PM6⁃3T⁃EH | 107.0 | 18.92 | PM6⁃3T⁃EH∶Y6 | 0.365 |
Y6 | 94.72 | 24.54 | - | - |
Table 3 Surface tension and interaction parameters of polymers and Y6 acceptor
Film | θWater/(°) | γ/(mN·m-1) | Blend film | χ |
---|---|---|---|---|
PM6 | 104.9 | 20.95 | PM6∶Y6 | 0.147 |
PM6⁃T⁃EH | 105.5 | 19.86 | PM6⁃T⁃EH∶Y6 | 0.247 |
PM6⁃2T⁃EH | 106.9 | 19.04 | PM6⁃2T⁃EH∶Y6 | 0.349 |
PM6⁃3T⁃EH | 107.0 | 18.92 | PM6⁃3T⁃EH∶Y6 | 0.365 |
Y6 | 94.72 | 24.54 | - | - |
1 | Zhu L., Zhang M., Xu J. Q., Li C., Yan J., Zhou G. Q., Zhong W. K., Hao T. Y., Song J. L., Xue X. N., Zhou Z. C., Zeng R., Zhu H. M., Chen C. C., MacKenzie R., Zou Y. C.,Nelson J., Zhang Y. M., Sun Y. M., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
2 | Wei Y. N., Chen Z. H., Lu G. Y., Yu N., Li C. Q., Gao J. H., Gu X. B., Hao X. T., Lu G. H., Tang Z., Zhang J. Q., Wei Z. X., Zhang X., Huang H., Adv. Mater., 2022, 34(33), 2204718 |
3 | Sun R., Wu Y., Yang X. R., Gao Y., Chen Z., Li K., Qiao J. W., Wang T., Guo J., Liu C., Hao X. T., Zhu H. M., Min J., Adv. Mater., 2022, 34(26), 2110147 |
4 | He C. L., Pan Y. W., Ouyang Y. N., Shen Q., Gao Y., Yan K. R., Fang J., Chen Y. Y., Ma C. Q., Min J., Zhang C. F., Zou L. J., Chen H. Z., Energy Environ. Sci., 2022, 15(6), 2537—2544 |
5 | Cui Y., Xu Y., Yao H., Bi P. Q., Hong L., Zhang J. Q., Zu Y. F., Zhang T., Qin J. Z., Ren J. Z., Chen Z. H., He C., Hao X. T., Wei Z. X., Hou J. H., Adv. Mater., 2021, 33(41), 2102420 |
6 | Guo Q., Guo Q., Geng Y. F., Tang A. L., Zhang M. J., Du M. Z., Sun X. N., Zhou E. J., Mater. Chem. Front., 2021, 5(8), 3257—3280 |
7 | Liu Q. S., Jiang Y. F., Jin K., Qin J. Q., Xu J. G., Li W. T., Xiong J., Liu J. F., Xiao Z., Sun K., Yang S. F., Zhang X. T., Ding L. M., Sci. Bull., 2020, 65(4), 272—275 |
8 | Liu F., Zhou L., Liu W. R., Zhou Z. C., Yue Q. H., Zheng W. Y., Sun R., Liu W. Y., Xu S. J., Fan H. J., Feng L. H., Yi Y. P., Zhang W. K., Zhu X. Z., Adv. Mater., 2021, 33(27), 2100830 |
9 | Tang A. L., Zhang Q. Q., Du M. Z., Li G. Q., Geng Y. F., Zhang J. Q., Wei Z. X., Sun X. N., Zhou E. J., Macromol., 2019, 52(16), 6227—6233 |
10 | Chen Y., Geng Y. F., Tang A. L., Wang X. C., Sun Y. M., Zhou E. J., Chem. Commun., 2019, 55(47), 6708—6710 |
11 | Zou Y. L., Chen H. B., Bi X. Q., Xu X. Y., Wang H. B., Lin M. L., Ma Z. F., Zhang M. T., Li C. X., Wan X. J., Long G. K., Yao Z. Y., Chen Y. S., Energy Environ. Sci., 2022, 15(8), 3519—3533 |
12 | Sun G. P., Jiang X., Li X. J., Meng L., Zhang J. Y., Qin S. C., Kong X. L., Li J., Xin J. M., Ma W., Li Y. F., Nat. Commun., 2022, 13(1), 5267 |
13 | Li Z. Y., Wang X. C., Zheng N., Saparbaev A., Zhang J. Y., Xiao C., Lei S. Y., Zheng X. F., Zhang M. X., Li Y. D., Xiao B., Yang R. Q., Energy Environ. Sci., 2022, 15(10), 4338—4348 |
14 | Li Y., Song J. L., Dong Y. C., Jin H., Xin J. M., Wang S. J., Cai Y. H., Jiang L., Ma W., Tang Z., Sun Y. M., Adv. Mater., 2022, 34(14), 2110155 |
15 | Yue Y. C., Zheng B., Ni J. L., Yang W. J., Huo L. J., Wang J. X., Jiang L., Adv. Sci., 2022, 9(32), 2204030 |
16 | Zheng B., Yue Y. C., Ni J. L., Sun R., Min J., Wang J. X., Jiang L., Huo L. J., Sci. China Chem., 2022, 65(5), 964—972 |
17 | Wang L. W., Qiao Z., Gao C., Liu J. W., Zhang Z. G., Li X. Y., Li Y. F., Wang H. Q., Macromolecules, 2016, 49(10), 3723—3732 |
18 | Park J. K., Jo J., Seo J. H., Moon J. S., Park Y. D., Lee K., Heeger A. J., Bazan G. C., Adv. Mater., 2011, 23(21), 2430—2435 |
19 | Lim B., Jo J., Na S. I., Kim J., Kim S. S., Kim D. Y., J. Mater. Chem., 2010, 20(48), 10919—10923 |
20 | Kim S., Park J. K., Park Y. D., RSC Adv., 2014, 4(74), 39268—39272 |
21 | Kim J. S., Lee Y., Lee J. H., Park J. H., Kim J. K., Cho K., Adv. Mater., 2010, 22(12), 1355—1360 |
22 | Chen C. M., Jen T. H., Chen S. A., ACS Appl. Mater. Interfaces, 2015, 7(37), 20548—20555 |
23 | Seo S., Lee J. W., Kim D. J., Lee D., Phan T. N., Park J., Tan Z. P., Cho S., Kim T. S., Kim B. J., Adv. Mater., 2023, doi:10.1002/adma.202300230 |
24 | Zhang Y. H., Deng J. W., Mao Q. L., Jeong S. Y., Huang X. X., Zhang L. F., Lee B., Huang B., Woo H. Y., Yang C., Xu J. Y., Wu F. Y., Cao Q. Y., Chen L., Chem. Eng. J., 2023, 457,141343 |
25 | Zhang K., Marszalek T., Wucher P., Wang Z. Y., Veith L., Lu H., Räder H. J., Beaujuge P. M., Blom P. W. M., Pisula W., Adv. Funct. Mater., 2018, 28, 1805594 |
26 | Huang X. X., Zhang L. F., Cheng Y. J., Oh J., Li C. Q., Huang B., Zhao L., Deng J. W., Zhang Y. H., Liu Z. J., Wu F. Y., Hu X. T., Yang C., Chen L., Chen Y. W., Adv. Funct. Mater., 2022, 32, 2108634 |
27 | Shang Z. T., Zhou L. Y., Sun C. K., Meng L., Lai W. B., Zhang J. Y., Huang W. C., Li Y. F., Sci. China Chem., 2021, 64(6), 1031—1038 |
28 | Zhou L. Y., Meng L., Zhang J. Y., Zhu C., Qin S. C., Angunawela I., Wan Y., Ade H., Li Y. F., Adv. Funct. Mater., 2021, 32(8), 2109271 |
29 | Zhang L. L., Sun R., Zhang Z. Q., Zhang J. Q., Zhu Q. L., Ma W., Min J., Wei Z. X., Deng D., Adv. Mater., 2022, 34(50), 2207020 |
30 | Huo L. J., Liu T., Sun X. B., Cai Y. H., Heeger A. J., Sun Y. M., Adv. Mater., 2015, 27(18), 2938—2944 |
31 | Yuan J., Zhang Y. Q., Zhou L. Y., Zhang G. C., Yip H. L., Lau T. K., Lu X. H., Zhu C., Peng H. J., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y. F., Zou Y. P., Joule, 2019, 3(4), 1—12 |
32 | Yang N., Cheng Y. J., Kim S., Huang B., Liu Z. J., Deng J. W., Wang J., Yang C., Wu F. Y., Chen L., ChemSusChem, 2022, 15(8), e202200138 |
33 | Li X. M., Duan X. P., Liang Z. Z., Yan L. H., Yang Y. N., Qiao J. W., Hao X. T., Zhang C., Zhang J., Li Y., Huang F., Sun Y. M., Adv. Energy Mater., 2022, 12(9), 2103684 |
34 | Wang J. W., Cui Y., Xu Y., Xian K. H., Bi P. Q., Chen Z. H., Zhou K. K., Ma L. J., Zhang T., Yang Y., Zu Y. F., Yao H. F., Hao X. T., Ye L., Hou J. H., Adv. Mater., 2022, 34(35), 2205009 |
35 | He C. L., Bi Z. Z., Chen Z., Guo J., Xia X. X., Lu X. H., Min J., Zhu H. M., Ma W., Zuo L. J., Chen H. Z., Adv. Funct. Mater., 2022, 32(18), 2112511 |
36 | Wang P. C., Bi F. Z., Li Y. H., Han C. Y., Zheng N., Zhang S., Wang J. X., Wu Y. W., Bao X. C., Adv. Funct. Mater., 2022, 32(23), 2200166 |
37 | Lu H., Li D. W., Ran G. L., Chen Y. N., Liu W. L., Wang H., Li S., Wang X. D., Zhang W. K., Liu Y. H., Xu X. J., Bo Z. S., ACS Energy Lett., 2022, 7(11), 3927—3935 |
38 | Wei Q. Y., Liang S. T., Liu W., Hu Y. B., Qiu B. B., Ren J., Yuan J., Huang F., Zou Y. P., Li Y. F., ACS Energy Lett., 2022, 7(7), 2373—2381 |
39 | Peng W. H., Lin Y. B., Jeong S. Y., Genene Z., Magomedov A., Woo H. Y., Chen C. L., Wahyudi W., Tao Q., Deng J. Y., Yu H., Getautis V., Zhu W. G., Anthopoulos T. D., Wang E. G., Nano Energy, 2022, 92,106681 |
40 | Sun C., Lee J. W., Seo S., Lee S., Wang C., Li H., Tan Z. P., Kwon S. K., Kim B. J., Kim Y. H., Adv. Energy Mater., 2021, 12(3), 2103239 |
41 | Zhang Y., Pan L. H., Peng Z. X., Deng W. Y., Zhang B., Yuan X. Y., Chen Z. L., Ye L., Wu H. B., Gao X., Liu Z. T., Duan C. H., Huang F., Cao Y., J. Mater. Chem. A, 2021, 9(23), 13522—13530 |
[1] | SHI Yu, ZHANG Liu, GUO Xia, WANG Yang, XIAO Haiqin, FANG Jin, ZHOU Yi, ZHANG Maojie. All-small-molecule Organic Solar Cells with Enhanced Efficiency and Stability Enabled by Polymer Additive as a Morphology Modulator [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230047. |
[2] | ZHAO Mingxin, YAO Zhigang, LIU Zhongyuan, XU Wenjing, MA Xiaoling, ZHANG Fujun. Research Progress of Layer-by-layer Deposited Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230120. |
[3] | WEI Wanxia, ZHOU Xianmin, DONG Xinyun, LIU Tiefeng, XIE Cong, CHENG Jingyu, CHEN Jianping, LU Xin, FENG Kai, ZHOU Yinhua. Cross-linking PEDOT∶F Hole-transporting Layer to Enhance Photovoltaic Performance of Flexible Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230069. |
[4] | SI Wenqin, LI Tengfei, LIN Yuze. Asymmetric Fused-ring Photovoltaic Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230149. |
[5] | ZHANG Yi, SHAN Tong, WANG Yan, ZHONG Hongliang. Non-fullerene Acceptors with Germanium as Bridge Atom and Their Applications in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230050. |
[6] | WEN Min, LI Haojie, LI Junliang, LIU Siqi, HU Xiaotian, CHEN Yiwang. Advances in Pseudo-planar Heterojunction Organic Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230174. |
[7] | ZHANG Yan, JIANG Xingjian, LIU Ming, ZHENG Zhi, ZHANG Yong. Predict Efficiency of Organic Solar Cell with Low Generalization Error Based on Molecular Property and Device Fabrication [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230165. |
[8] | FANG Haisheng, LIANG Shijie, XIAO Chengyi, XIA Dongdong, LI Weiwei. Double-cable Conjugated Polymers with Rigid Linkers for Single-component Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230146. |
[9] | CHEN Haiyang, LI Xinqi, DING Junyuan, HUANG Yuting, LI Yaowen. Pre-aggregation Manipulation of Polymer Donor Using Guest Plasticizers for Developing Nonhalogenated Green Solvent Processed High-performance Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230128. |
[10] | HE Wei, CHEN Fei, LI Hongxiang, WANG Jiayu, QIN Jiaqiang, CUI Ningbo, YAN Cenqi, CHENG Pei. High-performance Organic Solar Cells Based on Trifluorobenzoic Acid Self-assembled Anode Interfacial Layers [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230161. |
[11] | GUO Yuntong, CHEN Zhenyu, GE Ziyi. Effects of Different Halogenated End-groups Non-fullerene Acceptors on the Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230084. |
[12] | ZHANG Yongqian, ZHU Xiaoyu, MIAO Junhui, LIU Jun, WANG Lixiang. Effect of Alkyl-chain Branching Position on Molecular Aggregation of All-fused-ring Molecules [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230068. |
[13] | SUN Heng, ZHANG Pengyu, ZHANG Yingnan, ZHAN Chuanlang. Recent Progress in Non-fused Ring Small-molecule Acceptor Materials [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||