Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (12): 3615.doi: 10.7503/cjcu20210409
• Analytical Chemistry • Previous Articles Next Articles
LI Mei, XIA Xiaojuan, CHEN Zhixiong, YANG Meng, LI Ziying, YANG Tong, MENG Shuang, YANG Yunhui(), HU Rong(
)
Received:
2021-06-16
Online:
2021-12-10
Published:
2021-08-11
Contact:
YANG Yunhui,HU Rong
E-mail:yyhui2002@aliyun.com;hudierong_168@163.com
Supported by:
CLC Number:
TrendMD:
LI Mei, XIA Xiaojuan, CHEN Zhixiong, YANG Meng, LI Ziying, YANG Tong, MENG Shuang, YANG Yunhui, HU Rong. Construction of a Label-free Electrochemical Ochratoxin Aptasensor Based on Pt Nanoparticles@ metal-organic Framework Nanomimetic Enzyme[J]. Chem. J. Chinese Universities, 2021, 42(12): 3615.
Sample | Added/(ng?mL-1) | Found/(ng?mL-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 0.00 | Not found | —— | —— |
2 | 1.00 | 1.02 | 3.52 | 101.8 |
1.03 | 103.0 | |||
0.96 | 96.0 | |||
3 | 150.0 | 144.2 | 5.05 | 96.1 |
153.9 | 102.6 | |||
146.6 | 97.7 | |||
4 | 300.0 | 306.9 | 2.19 | 102.3 |
304.4 | 101.5 | |||
294.4 | 98.1 |
Sample | Added/(ng?mL-1) | Found/(ng?mL-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 0.00 | Not found | —— | —— |
2 | 1.00 | 1.02 | 3.52 | 101.8 |
1.03 | 103.0 | |||
0.96 | 96.0 | |||
3 | 150.0 | 144.2 | 5.05 | 96.1 |
153.9 | 102.6 | |||
146.6 | 97.7 | |||
4 | 300.0 | 306.9 | 2.19 | 102.3 |
304.4 | 101.5 | |||
294.4 | 98.1 |
Detection method | Sample | Background/(ng?mL-1) | Added/(ng?mL-1) | Found/(ng?mL-1) | Average found/(ng?mL-1) |
---|---|---|---|---|---|
ELISA Kit | 1 | Not found Not found Not found | 1.00 1.00 1.00 | 0.994 | 1.023 |
2 | 1.043 | ||||
3 | 1.032 | ||||
This work | 1 | Not found Not found Not found | 1.00 1.00 1.00 | 1.018 | 0.983 |
2 | 1.030 | ||||
3 | 0.960 |
Detection method | Sample | Background/(ng?mL-1) | Added/(ng?mL-1) | Found/(ng?mL-1) | Average found/(ng?mL-1) |
---|---|---|---|---|---|
ELISA Kit | 1 | Not found Not found Not found | 1.00 1.00 1.00 | 0.994 | 1.023 |
2 | 1.043 | ||||
3 | 1.032 | ||||
This work | 1 | Not found Not found Not found | 1.00 1.00 1.00 | 1.018 | 0.983 |
2 | 1.030 | ||||
3 | 0.960 |
Detection method | Linear range | Detection limit | Reference |
---|---|---|---|
Electrochemical sensor | 0.01—10 ng/mL | 5 pg/mL | [ |
Surface plasmon resonance | 0.094—10 ng/mL | 5 pg/mL | [ |
Impedimetric immunosensor | 0.05—5 ng/L | 0.01 ng/L | [ |
Fluorescence?based nanographite sensing | 8.5—171 ng/mL | 8 ng/mL | [ |
Monolithically integrated optoelectronic biosensor | 4—100 ng/mL | 2 ng/mL | [ |
Dual?ratiometric electrochemical aptasensor | 30—10000 pg/mL | 13.3 pg/mL | [ |
Label?free electrochemical aptamer sensor | 0.01—300 ng/mL | 3.33 pg/mL | This work |
Detection method | Linear range | Detection limit | Reference |
---|---|---|---|
Electrochemical sensor | 0.01—10 ng/mL | 5 pg/mL | [ |
Surface plasmon resonance | 0.094—10 ng/mL | 5 pg/mL | [ |
Impedimetric immunosensor | 0.05—5 ng/L | 0.01 ng/L | [ |
Fluorescence?based nanographite sensing | 8.5—171 ng/mL | 8 ng/mL | [ |
Monolithically integrated optoelectronic biosensor | 4—100 ng/mL | 2 ng/mL | [ |
Dual?ratiometric electrochemical aptasensor | 30—10000 pg/mL | 13.3 pg/mL | [ |
Label?free electrochemical aptamer sensor | 0.01—300 ng/mL | 3.33 pg/mL | This work |
1 | Xiong Z. W., Wang Q., Xie Y. J., Li N., Yun W., Yang L. Z., Food Chem., 2021, 338, 128122 |
2 | Nao S. C., Wu K. J., Wang W., Leung C. H., Ma D. L., Front. Chem., 2020, 8, 767—778 |
3 | Zhu W., Li L., Zhou Z., Yang X. D., Hao N., Guo Y. S., Wang K., Food Chem., 2020, 319, 126544 |
4 | Zhang J., Xu X., Qiang Y., Sensor. Actuat. B⁃Chem., 2020, 312, 1—8 |
5 | Taghdisi S. M., Danesh N. M., Ramezani M., Alibolandi M., Talanta, 2021, 223, 121705 |
6 | Lu L., Yuan W., Xiong Q., Wang M. H., Liu Y. J., Cao M., Xiong X. H., Anal. Chim. Acta, 2021, 1141, 83—90 |
7 | El⁃Moghazy A. Y., Amaly N., Istamboulie G., Nitin N., Microchim. Acta, 2020, 187(9), 535—546 |
8 | Arranz I., Baeyens W. R. G., Weken G., Saeger S., Peteghem C., Crit. Rev. Food Science and Nutrition, 2004, 44(3), 195—203 |
9 | Ding Y., Shang H., Wang X., Chen L. G., Analyst, 2020, 145(18), 6079—6084 |
10 | Hao L. W., Chen J., Chen X. R., Ma T. T., Cai X. X., Duan H., Leng Y. K., Huang X. L., Xiong Y. H., Food Chem., 2021, 336, 127710 |
11 | Li Q. J., Liang B. W., Li W., Li W. W., Sun J., Jiao S., Wang S., Sensor. Actuat. B⁃Chem., 2020, 330, 129367 |
12 | Zaman Z., Rashid S., Nasir M., Liaqat M., Asrar. Ahmed S., Shahidc S. A., Hayata A., Mater. Chem. Phys., 2021, 258, 123843 |
13 | Song Y., Wang X., Zhao C., Qu K. G., Ren J. S., Qu X. G., Chem. Eur. J., 2010, 16(12), 3617—3621 |
14 | Cormode D. P., Gao L., Koo H., Trends Biotechnol., 2018, 36(1), 15—29 |
15 | Kempahanumakkagaria S., Kumarb V., Samaddarc P., Kumard P., Ramakrishnappae T., Kim K. H., Biotechnol. Adv., 2018, 36(2), 467—481 |
16 | Yi F. Y., Chen D., Wu M. K., Han L., Jiang H. L., ChemPlusChem., 2016, 81, 675—690 |
17 | Chen Y., Mab S. Q., Dalton T., 2016, 45, 9744—9753 |
18 | Wang H. S., Coordin. Chem. Rev., 2017, 349, 139—155 |
19 | Feng J. H., Li Y. Y., Li M. D., Li F. Y., Han J., Dong Y. Y., Chen Z. W., Wang P., Liu H., Wei Q., Biosens. Bioelectron., 2017, 91, 441—448 |
20 | Wu J., Lv W. X., Yang Q., Li H., Li F., Biosens. Bioelectron., 2021, 171, 112707 |
21 | Bennett J. W., Klich M., Clin. Microbiol. Rev., 2003, 16(3), 497—516 |
22 | Li Y. L.,Yu C., Yang B., Liu Z., Xia P., Wang Q., Biosens. Bioelectron., 2018, 102, 307—315 |
23 | Zhou W., Wu H., Yildirim T., J. Am. Chem. Soc., 2008, 130(46), 15268—15269 |
24 | Wang Z., Liu N., Ma Z., Biosens. Bioelectron., 2014, 53, 324—329 |
25 | Feng C., Qiao S. S., Guo Y., Xie Y. H., Zhang L., Akram N., Colloids and Surfaces A, 2020, 597, 124781 |
26 | Wang C., Qian J., An K., Huang X., Zhao L., Liu Q., Biosens. Bioelectron., 2017, 89, 802—809 |
27 | Zhu Z. L., Feng M. X., Zuo L. M., Zhu Z., Wang F., Chen L., Biosens. Bioelectron., 2015, 65, 320—326 |
28 | Malvano F., Albanese D., Pilloton R., Matteo M. D., Food Chem., 2016, 212, 688—694 |
29 | Wei Y., Zhang J., Wang X., Duan Y. X., Biosens. Bioelectron., 2015, 65(15), 16—22 |
30 | Pagkali V., Petrou P. S., Salapatas A., Makarona E., J. Hazard. Mater., 2016, 323, 75—83 |
31 | Zhu C. X., Liu D., Li Y. Y., Ma S., Wang M., You T., Biosens. Bioelectron., 2020, 174, 112654 |
[1] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[2] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[3] | TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan, WANG Yu, WANG Jian. A Squaramide-containing Luminescent Metal-organic Framework as a High Selective Sensor for Histidine [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210589. |
[4] | XING Peiqi, LU Tong, LI Guanghua, WANG Liyan. Controllable Syntheses of Two Cd(II) Metal-organic Frameworks Possessing Related Structures [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220218. |
[5] | LIU Xueguang, YANG Xiaoshan, MA Jingjing, LIU Weisheng. Separating Methyl Blue Selectively from the Mixture of Dyes by Europium Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210715. |
[6] | MO Zongwen, ZHANG Xuewen, ZHOU Haolong, ZHOU Dongdong, ZHANG Jiepeng. Guest-responses of A Porous Coordination Polymer Based on Synergistic Hydrogen Bonds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210576. |
[7] | SHI Xiaofan, ZHU Jian, BAI Tianyu, FU Zixuan, ZHANG Jijie, BU Xianhe. Research Status and Progress of MOFs with Application in Photoelectrochemical Water-splitting [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210613. |
[8] | WU Ji, ZHANG Hao, LUO Yuhui, GENG Wuyue, LAN Yaqian. A Microporous Cationic Ga(III)-MOF with Fluorescence Properties for Selective sensing Fe3+ Ion and Nitroaromatic Compounds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210617. |
[9] | LI Wen, QIAO Junyi, LIU Xinyao, LIU Yunling. Zirconium-based Metal-Organic Framework with Naphthalene for Fluorescent Detection of Nitroaromatic Explosives in Water [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210654. |
[10] | WANG Jie, HUO Haiyan, WANG Yang, ZHANG Zhong, LIU Shuxia. General Strategy for In situ Synthesis of NENU-n Series Polyoxometalate-based MOFs on Copper Foil [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210557. |
[11] | HAN Zongsu, YU Xiaoyong, MIN Hui, SHI Wei, CHENG Peng. A Rare Earth Metal-Organic Framework with H6TTAB Ligand [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210342. |
[12] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[13] | ZHANG Chi, SUN Fuxing, ZHU Guangshan. Synthesis, N2 Adsorption and Mixed-matrix Membrane Performance of Bimetal Isostructural CAU-21 [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210578. |
[14] | ZHANG Renli, WANG Yao, YU Zhiquan, SUN Zhichao, WANG Anjie, LIU Yingya. Molybdenum Peroxide Anchored on Fluoronated UiO-66 as Catalyst in the Oxidation of Sulfur Containing Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1914. |
[15] | ZHAO Yangyang, LIU Qiyong, CHEN Boxin, ZHAO Bin, ZHOU Haimei, LI Xinxin, ZHENG Dan, FENG Fei. Silicon-based Micro Gas Chromatographic Column Using Metal-Organic Framework Material ZIF-8 as Stationary Phase [J]. Chem. J. Chinese Universities, 2021, 42(6): 1736. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||