Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (1): 20210575.doi: 10.7503/cjcu20210575
• Review • Previous Articles Next Articles
LI Shurong1, WANG Lin1, CHEN Yuzhen1(), JIANG Hailong2()
Received:
2021-08-16
Online:
2022-01-10
Published:
2021-09-22
Contact:
CHEN Yuzhen,JIANG Hailong
E-mail:chenzhen1738@163.com;jianglab@uste.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production[J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575.
Entry | Catalyst | Hydrogen storage material | TOF/ (molH2·molc a t- 1·min-1) | Ref. |
---|---|---|---|---|
1 | CuNi?MOFs | NH3BH3 | 40.85 | [ |
2 | Ru@MIL?53(Al) | NH3BH3 | 266.9 | [ |
3 | Ru/MIL?53(Al)?NH2 | NH3BH3 | 287.0 | [ |
4 | AgPd@UIO?66?NH2 | NH3BH3 | 90.0 | [ |
5 | AuNi@MIL?101 | NH3BH3 | 66.2 | [ |
6 | AuCo@MIL?101 | NH3BH3 | 23.5 | [ |
7 | NiRu@MIL?101 | NH3BH3 | 272.7 | [ |
8 | Pd@Co@MIL?101 | NH3BH3 | 51.0 | [ |
9 | AgNi/MIL?101 | NH3BH3 | 20.2 | [ |
10 | Ni2Pt@ZIF?8 | NH3BH3 | 361 | [ |
11 | Rh15Ni85@ZIF?8 | NH3BH3 | 58.8 | [ |
12 | RuCuCo@MIL?101 | NH3BH3 | 241.2* | [ |
13 | 4?PySI?Pd@Cu(BDC) | HCOOH | 6.9 | [ |
14 | AuPd?MnOx/ZIF?8?rGO | HCOOH | 6.4 | [ |
15 | 10% Ni0.4Pd0.6/MOF?Cr | HCOOH | 12.3 | [ |
16 | RhNi/MIL?101 | N2H4BH3 | 20.0 | [ |
17 | Ni0.36Fe0.24Pd0.4/MIL?101 | N2H4·H2O | 7.1 | [ |
N2H4BH3 | 1.0 | |||
N2H4·H2O | 0.7 | |||
18 | NiPt NPs/MIL?101?NH2 | N2H4·H2O | 2.3 | [ |
19 | Ni NPs/ZIF?8 | NH3BH3 | 85.7 | [ |
20 | Cu0.5@Co0.5?MOF/5 | NH3BH3 | 129.8 | [ |
21 | Cu6Fe0.8Co3.2@MIL?101 | NH3BH3 | 23.2 | [ |
22 | CuCo(O)@CN | NH3BH3 | 12.4 | [ |
23 | CoP@CNFs | NH3BH3 | 165.5 | [ |
24 | Co/HPC | NH3BH3 | 2.9 | [ |
25 | 10%?CoNi/HPC?400 | NH3BH3 | 27.2 | [ |
26 | CoP@HPC?500 | NH3BH3 | 27.7 | [ |
27 | AgPd/MOF?5?C | HCOOH | 14.2 | [ |
Table 1 Recent reports in catalytic hydrogen production by MOF-based composites
Entry | Catalyst | Hydrogen storage material | TOF/ (molH2·molc a t- 1·min-1) | Ref. |
---|---|---|---|---|
1 | CuNi?MOFs | NH3BH3 | 40.85 | [ |
2 | Ru@MIL?53(Al) | NH3BH3 | 266.9 | [ |
3 | Ru/MIL?53(Al)?NH2 | NH3BH3 | 287.0 | [ |
4 | AgPd@UIO?66?NH2 | NH3BH3 | 90.0 | [ |
5 | AuNi@MIL?101 | NH3BH3 | 66.2 | [ |
6 | AuCo@MIL?101 | NH3BH3 | 23.5 | [ |
7 | NiRu@MIL?101 | NH3BH3 | 272.7 | [ |
8 | Pd@Co@MIL?101 | NH3BH3 | 51.0 | [ |
9 | AgNi/MIL?101 | NH3BH3 | 20.2 | [ |
10 | Ni2Pt@ZIF?8 | NH3BH3 | 361 | [ |
11 | Rh15Ni85@ZIF?8 | NH3BH3 | 58.8 | [ |
12 | RuCuCo@MIL?101 | NH3BH3 | 241.2* | [ |
13 | 4?PySI?Pd@Cu(BDC) | HCOOH | 6.9 | [ |
14 | AuPd?MnOx/ZIF?8?rGO | HCOOH | 6.4 | [ |
15 | 10% Ni0.4Pd0.6/MOF?Cr | HCOOH | 12.3 | [ |
16 | RhNi/MIL?101 | N2H4BH3 | 20.0 | [ |
17 | Ni0.36Fe0.24Pd0.4/MIL?101 | N2H4·H2O | 7.1 | [ |
N2H4BH3 | 1.0 | |||
N2H4·H2O | 0.7 | |||
18 | NiPt NPs/MIL?101?NH2 | N2H4·H2O | 2.3 | [ |
19 | Ni NPs/ZIF?8 | NH3BH3 | 85.7 | [ |
20 | Cu0.5@Co0.5?MOF/5 | NH3BH3 | 129.8 | [ |
21 | Cu6Fe0.8Co3.2@MIL?101 | NH3BH3 | 23.2 | [ |
22 | CuCo(O)@CN | NH3BH3 | 12.4 | [ |
23 | CoP@CNFs | NH3BH3 | 165.5 | [ |
24 | Co/HPC | NH3BH3 | 2.9 | [ |
25 | 10%?CoNi/HPC?400 | NH3BH3 | 27.2 | [ |
26 | CoP@HPC?500 | NH3BH3 | 27.7 | [ |
27 | AgPd/MOF?5?C | HCOOH | 14.2 | [ |
Fig.1 Schematic representation of immobilization of the AuNi nanoparticles by the MIL?101 matrix using the DSM combined with a liquid?phase CCR strategy[39]Copyright 2013, American Chemical Society.
Fig.3 Schematic representation of synthesis and application of AgPd@MIL?100(Fe) core?shell NPs for FA decomposition at 298 K[67]Copyright 2015, the Royal Society of Chemistry.
Fig.7 Schematic illustration for the oriented growth of Cu2O@HKUST?1 and random growth of Cu2O/HKUST?1 composites(A), Cu2O@HKUST?1 reduce to Cu NCs@HKUST?1 and synthesis of aromatic imines through hydrogenation of nitrobenzene and reductive amination of benzaldehyde(B)[90]Copyright 2021, Wiley?VCH GmbH.
1 | Züttel A., Borgschulte A., Schlapbach L., Hydrogen as a Future Energy Carrier, Wiley⁃VCH, Weinheim, 2008 |
2 | Manoharan Y., Hosseini S. E., Butler B., Alzhahrani H., Senior B. T. F., Ashuri T., Krohn J., Appl. Sci., 2019, 9(11), 2296 |
3 | Lang C., Jia Y., Yao X., Energy Storage Mater.,2020, 26, 290—312 |
4 | Navlani⁃García1 M., Mori K., Kuwahara Y., Yamashita H., NPG Asia Mater., 2018, 10, 277—292 |
5 | Jiang H. L., Xu Q., Catal. Today, 2011, 170(1), 56—63 |
6 | Jiang H. L., Singh S. K., Yan J. M., Zhang X. B. Xu Q., ChemSusChem, 2010, 3(5), 541—549 |
7 | Fellay C., Dyson P. J., Laurenczy G., Angew. Chem., 2008, 120(21), 4030—4032 |
8 | Zhang J., Kang Q., Yang Z., Dai H., Zhuang D., Wang P., J. Mater. Chem. A, 2013, 1, 11623—11628 |
9 | Yao Q. L., Du H. X., Lu Z. H., Prog. Chem., 2020, 32(12), 1930—1951(姚淇露, 杜红霞, 卢章辉. 化学进展, 2020, 32(12), 1930—1951) |
10 | Gong J., Li G., Tang Z., Nano Today, 2012, 7(6), 564—585 |
11 | Narayanan R., El⁃Sayed M. A., J. Am. Chem. Soc., 2003, 125, 8340—8347 |
12 | Gonzalez M. I., Turkiewicz A. B., Darago L. E., Oktawiec J., Bustillo K., Grandjean F., Long G. J., Long J. R., Nature, 2020, 577, 64—68 |
13 | Férey G., Mellot⁃Draznieks C., Serre C., Millange F., Acc. Chem. Res., 2005, 38(4), 217—225 |
14 | Zhou H. C., Kitagawa S., Chem. Soc. Rev., 2014, 43, 5415—5418 |
15 | Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112(2), 673—674 |
16 | Zhang J. P., Zhu A. X., Lin R. B., Qi X. L., Chen X. M., Adv. Mater.,2011, 23, 1268—1271 |
17 | Pang Q., Tu B., Li Q., Coord. Chem. Rev., 2019, 388, 107—125 |
18 | Shen K., Zhang L., Chen X., Liu L., Zhang D., Han Y., Chen J., Long J., Luque R., Li Y., Chen B., Science, 2018, 359, 206—210 |
19 | Hu Z. C., Deibert B. J., Li J., Chem. Soc. Rev., 2014, 43, 5815—5840 |
20 | Huang G., Chen Y. Z., Jiang H. L., Acta Chim. Sinica,2016, 74(2), 113—129(黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74(2), 113—129) |
21 | Jia J. T., Wang L., Zhao Q., Sun F. X., Zhu G. S., Acta Chim. Sinica,2013, 71(11), 1492—1495(贾江涛, 王蕾, 赵晴, 孙福兴, 朱广山. 化学学报, 2013, 71(11), 1492—1495) |
22 | Nash G. T., Luo T. K., Lan G. G., Ni K. Y., Kaufmann M., Lin W. B., J. Am. Chem. Soc., 2021, 143(5), 2194—2199 |
23 | Xiao Yi. H., Tian W. M., Jin S. Y., Gu Z. G., Zhang J., Small,2020, 16(45), 2005111 |
24 | Qin J. S., Yuan S., Zhang L., Li B., Du D. Y., Huang N., Guan W., Drake H. F., Pang J., Lan Y. Q., Alsalme A., Zhou H. C., J. Am. Chem. Soc., 2019, 141(5), 2054—2060 |
25 | Zhang Z. Q., Peh S. B., Krishna R., Kang C. J., Chai K. G., Wang Y. X., Shi D. C., Zhao D., Angew. Chem. Int. Ed., 2021, 60(31), 17198—17204 |
26 | Huang G., Yang L., Yin Q., Fang Z. B., Hu X. J., Zhang A. A., Jiang J., Liu T. F.,Cao R., Angew. Chem. Int. Ed., 2020, 59(11), 4385—4390 |
27 | Yu M. H., Space B., Franz D., Zhou W., He C., Li L., Krishna R., Chang Z., Li W., Hu T. L., Bu X. H., J. Am. Chem. Soc., 2019, 141(44), 17703—17712 |
28 | Zhou G., Wang B., Cao R., J. Am. Chem. Soc., 2020, 142(35), 14848—14853 |
29 | He P. C., Zhou J., Zhou A W., Dou Y. B., Li J. R., Chem. J. Chinese Universities, 2019, 40(5), 855—866(何鹏琛, 周健, 周阿武, 豆义波, 李建荣. 高等学校化学学报, 2019, 40(5), 855—866) |
30 | Xia Y. P., Wang C. X., Zheng J. Y., Li N., Chang Z., Bu X. H., Chem. J. Chinese Universities, 2020, 41(11), 2415—2420(夏雨沛, 王晨雪, 郑金玉, 李娜, 常泽, 卜显和. 高等学校化学学报, 2020, 41(11), 2415—2420) |
31 | Xiang W. L., Zhang Y. P., Lin H. F., Liu C. J., Molecules, 2017, 22(12), 2103 |
32 | Zhang Y. P., Zhou Y., Zhao Y., Liu C. J., Catal. Today, 2016, 263, 61—68 |
33 | Shen K., Chen X. D., Chen J. Y., Li Y. W., ACS Catal., 2016, 6(9), 5887—5903 |
34 | Zhang Y. F., Qiu L. G., Yuan Y. P., Zhu Y. J., Jiang X., Xiao J. D., Appl. Catal. B: Environ., 2014, 144, 863—869 |
35 | Lia Y. T., Ullah S., Han Z., Zheng X. C., Zheng G. P., Catal. Commun., 2020, 143, 106057 |
36 | Yang K. Z., Zhou L. Q., Yu G. F., Xiong X., Ye M. L., Li Y., Lu D., Pan Y. X., Chen M. H., Zhang L., Gao D. D., Wang Z., Liu H. Y., Xia Q. H., Int. J. Hydrogen Energ., 2016, 41(15), 6300—6309 |
37 | Zhang S. R., Zhou L. Q., Chen M. H., RSC Adv., 2018, 8(22), 12282—12291 |
38 | Shang N. Z., Feng C., Gao S. T., Wang C., Int. J. Hydrogen Energ., 2016, 41(2), 994—950 |
39 | Zhu Q. L., Li J., Xu Q., J. Am. Chem. Soc., 2013, 135(28), 10210—10213 |
40 | Li J., Zhu Q. L., Xu Q., Chem. Commun.,2014, 50(44), 5899—5901 |
41 | Roy S., Pachfule P., Xu Q., Eur. J. Inorg. Chem.,2016, 2016(27), 4353—4357 |
42 | Chen Y. Z., Xu Q., Yu S. H., Jiang H. L., Small, 2015, 11(1), 71—76 |
43 | Chen Y. Z., Liang L. F., Yang Q. H., Hong M. C., Xu Q., Yu S. H., Jiang H. L., Mater. Horiz.,2015, 2(6), 606—612 |
44 | Fu F.Y., Wang C. L., Wang Q., Martinez⁃Villacorta A. M., Escobar A., Chong H. B., Wang X., Moya S., Salmon L., Fouquet E., Ruiz J., Astruc D., J. Am. Chem. Soc., 2018, 140(31), 10034—10042 |
45 | Xia B. Q., Liu C., Wu H., Luo W., Cheng G. Z., Int. J. Hydrogen Energ., 2015, 40(46), 16391—16397 |
46 | Yang K. Z., Zhou L. Q., Xiong X., Ye M. L., Li L., Xia Q. H., Micropor. Mesopor. Mat., 2016, 225, 1—8 |
47 | Alamgholilooa H., Zhang S. B., Ahadia A., Rostamnia S., Banaeia R., Li Z. C., Liu X., Shokouhimehre M., Mol. Catal., 2019, 467, 30—37 |
48 | Yan J. M., Wang Z. L., Gu L., Li S. J., Wang H. L., Zheng W. T., Jiang Q. J., Adv. Energy Mater., 2015, 5(10), 1500107 |
49 | Ma C. J., Duan J. C., Fu Y., Chang J., Int. J. Hydrogen Energ.,2021, 46(7), 5259—5269 |
50 | Zhang Z. J., Zhang S. L., Yao Q. L., Feng G., Zhu M. H., Lu Z. H., Inorg. Chem. Front.,2018, 5,370—377 |
51 | Yang K., Yang K. K., Zhang S. L., Luo Y., Yao Q. L., Lu Z. H., J. Alloy. Compd., 2018,732, 363—371 |
52 | Liu P. L., Gu X. J., Wu Y. Y., Cheng J., Su H. Q., Int. J. Hydrogen Energ., 2017, 42(30), 19096—19105 |
53 | Wang C. L., Tuninetti J., Wang Z., Zhang C., Ciganda R., Salmon L., Moya S., Ruiz J., Astruc D., J. Am. Chem. Soc.,2017, 139(33), 11610—11615 |
54 | Xu W. J., Li W., Wen H., Ding J., Liu S. H., Li W., Li B. J., Appl. Catal. B: Environ., 2021, 286, 119946 |
55 | Li Y., Li S. F., Int. J. Hydrogen Energ., 2020, 45(17), 10433—10441 |
56 | Yuan Y., Chen X. Y., Zhang X., Wang Z. M., Yu R. B., Inorg. Chem. Front., 2020, 7, 2043—2049 |
57 | Hou C. C., Chen Q. Q., Li K., Wang C. J., Peng C. Y., Shi R., Chen Y., J. Mater. Chem. A, 2019, 7, 8277—8283 |
58 | Zhang X. L., Zhang D. X., Chang G. G., Ma X. C., Wu J., Wang Y., Yu H. Z., Tian G., Chen J., Yang X. Y., Ind. Eng. Chem. Res.,2019, 58(17), 7209—7216 |
59 | Chen M. J., Zhang D. X., Li D., Ke S. C., Ma X. C., Chang G. G., Chen J., Yang X. Y., New J. Chem., 2020, 44, 3021—3027 |
60 | Ma X. C., He Y. Y., Zhang D. X., Chen M. J., Ke S. C, Yin Y. X., Chang G. G., ChemistrySelect,2020, 5(7), 2190—2196 |
61 | Feng C., Wang Y., Gao S. T., Shang N. Z., Wang C., Catal. Commun.,2016, 78, 17—21 |
62 | Chung J. Y., Liao C. W., Chang Y. W., Chang B. K., Wang H., Li J., Wang C. Y., J. Phys. Chem. C, 2017, 121(49), 27369—27378 |
63 | Yang Q., Liu W., Wang B., Zhang W., Zeng X., Zhang C., Qin Y., Sun X., Wu T., Liu J, Huo F., Lu J., Nat. Commun., 2017, 8, 14429 |
64 | Chen Y. Z., Wang Z. U., Wang H., Lu J., Yu S. H., Jiang H. L., J. Am. Chem. Soc., 2017, 139(5), 2035—2044 |
65 | Matsuyama K., Motomura M., Kato T., Okuyama T., Muto H., Micropor. Mesopor. Mat., 2016, 225, 26—32 |
66 | Loges B., Boddien A., Junge H., Beller M., Angew. Chem. Int. Ed., 2008, 47(21), 3962—3965 |
67 | Ke F., Wang L. H., Zhu J. F., Nanoscale, 2015, 7, 8321—8325 |
68 | Zhang Z. J., Zhang S. L., Yao Q. L., Chen X. S., Lu Z. H., Inorg. Chem., 2017, 56(19), 11938—11945 |
69 | Jiang R., Qu X. P., Zeng F. N., Li Q., Zheng X., Xu Z. M., Peng J., Int. J. Hydrogen Energ., 2019, 44(13), 6383—6391 |
70 | Song X., Yang P., Wang J. C., Zhao X. C., Zhou Y. L., Li Y. T., Yang L. J., Inorg. Chem. Front.,2019, 6, 2727—2735 |
71 | Tan Y., Li Q., Lu Z., Yang C., Qian W., Yu F., J. Alloy Compd., 2021, 826, 159788 |
72 | Jiang H. L., Akita T., Xu Q., Chem. Commun., 2011, 47(39), 10999—11001 |
73 | Metin Ö., Mazumder V., Özkar S., Sun S., J. Am. Chem. Soc., 2010, 132(5), 1468—1469 |
74 | Wen M. C., Cui Y. W., Kuwahara Y., Mori K., Yamashita H., ACS Appl. Mater. Interfaces., 2016, 8(33), 21278—21284 |
75 | Li J., Zhu Q. L., Xu Q., Catal. Sci. Technol., 2015, 5, 525—530 |
76 | Liu P. L., Gu X. J., Kang K., Zhang H., Cheng J., Su H. Q., ACS Appl. Mater. Interfaces, 2017, 9(12), 10759—10767 |
77 | Wu H. B., Lou X. W., Sci. Adv., 2017, 3, eaap9252 |
78 | Zhu Z., Zhai Y., Li Z., Zhu P., Mao S., Zhu C., Du D., Belfiore L. A., Tang J., Lin Y., Mater. Today, 2019, 30, 52—79 |
79 | Pachfule P., Yang X. C., Zhu Q. L., Tsumori N., Uchida T., Xu Q., J. Mater. Chem. A, 2017, 5, 4835—4841 |
80 | Zhang H. H., Fan Y. P., Liu B. Z., Liu Y. Y., Ashraf S., Wu X. L., Han G. S., Gao J., Li B. J., ACS Sustainable Chem. Eng., 2019, 7(11), 9782—9792 |
81 | Zacho S. L., Mielbya J., Kegnæs S., Catal. Sci. Technol., 2018, 8, 4741—4746 |
82 | Qu X. P., Jiang R., Li Q., Zeng F. N., Zheng X., Xu Z. M., Chen C. H., Peng J., Green Chem., 2019, 21, 850—860 |
83 | Jiang R., Wang W. Z., Zheng X., Li Q., Xu Z. M., Peng J., Int. J. Hydrogen Energy, 2021, 46(7), 5345—5354 |
84 | Li X., Surkus A. E., Rabeah J., Anwar M., Dastigir S., Junge H., Brückner A., Beller M., Angew. Chem. Int. Ed., 2020, 59(37), 15849—15854 |
85 | Ma X., Zhou Y. X, Liu H., Li Y., Jiang H. L., Chem. Commun., 2016, 52(49), 7719—7722 |
86 | Liu Z., Dong W. H., Cheng S. S., Guo S., Shang N. Z., Gao S. T., Feng C., Wang C., Wang Z., Catal. Commun.,2017, 95, 50—53 |
87 | Yang Q., Chen Y. Z., Wang Z. U., Xu Q., Jiang H. L., Chem. Commun.,2015, 51(52), 10419—10422 |
88 | Zhou Y. H., Yang Q. H., Chen Y. Z., Jiang H. L., Chem. Commun., 2017, 53(91), 12361—12364 |
89 | Sun J. L., Chen Y. Z., Ge B. D., Li J. H., Wang G. M., ACS Appl. Mater. Interfaces, 2019, 11(1), 940—947 |
90 | Wang L., Li S. R., Chen Y. Z., Jiang H. L., Small,2021, 17(22), 2004481 |
[1] | SHI Xiaofan, ZHU Jian, BAI Tianyu, FU Zixuan, ZHANG Jijie, BU Xianhe. Research Status and Progress of MOFs with Application in Photoelectrochemical Water-splitting [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210613. |
[2] | LI Liu, SUN Shiyong, LYU Rui, GOLUBEV Yevgeny Aleksandrovich, WANG Ke, DONG Faqin, DUAN Tao, KOTOVA Olga Borisovna, KOTOVA Elena Leonidovna. Construction of Fe-aminoclay-glucose Oxidase Nanocomposite Catalyst and Its Multi-enzyme Cascade Analysis [J]. Chem. J. Chinese Universities, 2021, 42(3): 803. |
[3] | QI Yi, LI Qiaowei. Synthesis of Pillared-layer Metal-organic Frameworks from Anthracene Luminescent Linkers and Their Piezochromic Properties [J]. Chem. J. Chinese Universities, 2020, 41(3): 417. |
[4] | HE Pengchen,ZHOU Jian,ZHOU Awu,DOU Yibo,LI Jianrong. MOFs-Based Materials for Photocatalytic CO2 Reduction† [J]. Chem. J. Chinese Universities, 2019, 40(5): 855. |
[5] | WU Juan, ZHAO Bowen, HUANG Chao, CHEN Dongmei, ZHU Bixue. Supramolecular Design of Coordination Complexes of Zn(Ⅱ) and Vapor Adsorption for MeOH† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1069. |
[6] | ZHANG Yi, YANG Xiangui, WANG Qingyin, YAO Jie, HU Jing, WANG Gongying. Synthesis of Nitro-modified MOF-5 and Its Application on Catalyzing the Thermal Decomposition of Carbamates† [J]. Chem. J. Chinese Universities, 2014, 35(3): 613. |
[7] | XU Li, CHEN Chao, WANG Rui, LUO Jia-Huan, LIU Yun-Ling, ZHANG Ning. Preparation of CuO/CeO2 Catalysts from Metal-organic Frameworks Precursor for Preferential CO Oxidation [J]. Chem. J. Chinese Universities, 2013, 34(8): 1907. |
[8] | SUN Na, WU Jun-Tao*, JIANG Lei*. Research Progress of Nacre and Biomimetic Synthesis of Nacre-like Materials [J]. Chem. J. Chinese Universities, 2011, 32(10): 2231. |
[9] |
CAI Xiao-Hui1,2, ZHU Guang-Shan2, GAO Bo3, ZHANG Wei-Wei2, ZHANG Da-Liang2, WEI Yu-Hong2, QIU Shi-Lun2, WANG Ce1 . Preparation of Ag/SBA-15 Nanocomposite and Its Bactericidal Activity [J]. Chem. J. Chinese Universities, 2006, 27(11): 2042. |
[10] | YANG Zheng-Long, HOU Wen-Bo, LIU Zheng-Ping, HUANG Li-Yan, PENG Xiao-Gang . Studies on Monodisperse Core/Shell Conductive Polymer Composite Materials(Ⅰ)——Characterization of Monodisperse Core/Shell Polystyrene/Polypyrrole Structure [J]. Chem. J. Chinese Universities, 2002, 23(10): 2014. |
[11] | GAO Xue-Ping, QIN Xue, WU Feng, SONG De-Ying, ZHOU Zuo-Xiang, SHEN Pan-Wen. Electrochemical Properties of Composite Hydrogen Storage Materials of Carbon Nanotubes and Mm(Ni-Co-Al-Mn)5 [J]. Chem. J. Chinese Universities, 2001, 22(S1): 33. |
[12] | YU Da-Shu, HAN Jie-Cai, YU Yan-Ju, HE Xiao-Dong, XUE Chong-Quan . Synthesis and Properties for the Composite Materials of Lead Titanate Ceramics by Nanometer Crystals and Fiber [J]. Chem. J. Chinese Universities, 2001, 22(10): 1634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||