Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (8): 2342.doi: 10.7503/cjcu20210177
• Review • Previous Articles Next Articles
LI Huiyang1, ZHU Siying1, LI Sha1, ZHANG Qiaobao2(), ZHAO Jinbao1, ZHANG Li1(
)
Received:
2021-03-16
Online:
2021-08-10
Published:
2021-08-05
Contact:
ZHANG Qiaobao
E-mail:zhangqiaobao@xmu.edu.cn;zhangli81@xmu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Huiyang, ZHU Siying, LI Sha, ZHANG Qiaobao, ZHAO Jinbao, ZHANG Li. Influencing Factors and Promotion Strategies of the First-cycle Coulombic Efficiency of Silicon Suboxide Anodes in Lithium-ion Batteries[J]. Chem. J. Chinese Universities, 2021, 42(8): 2342.
Year | Material | ICE(%) | Reversible capacity/(mA·h·g-1)) | Current density/(A·g-1) | Electrolyte system | Binder | Ref. |
---|---|---|---|---|---|---|---|
2007 | SiOx?C | 76 | 800 | 0.1 | 1 mol/L LiPF6 in EC/ DEC | PVDF | [ |
2017 | cnSi/SiOx@Cy | 85.53 | 2200 | 1 | 1 mol/L LiPF6 in EC/DEC/DMC+15%FEC | Sodium alginate | [ |
2017 | SiOx/C/ Ni | 76.3 | 1200 | 0.2 | 1 mol/L LiPF6 in EC/DEC/DMC+5%FEC | No | [ |
2018 | SiOx@G | 69 | 1275 | 0.1 | 1 mol/L LiPF6 in EC/DEC/DMC+5%FEC | CMC/SBR | [ |
2019 | SiO@CNTs/C | 60.6 | 821.7 | 1 | 1 mol/L LiPF6 in EC/DEC+5%FEC | CMC | [ |
2021 | SiOx@CNTs/C | 88 | 902 | 1 | 1 mol/L LiPF6 in EC/DEC/EMC+FEC | CMC | [ |
2010 | SiAl0.2O | 67.4 | 1510 | 0.06 | 1 mol/L LiPF6 in EC/DEC/EMC | PAI | [ |
2018 | Sn2Fe@SiOx | 78 | 849 | 0.2 | 1 mol/L LiPF6 in EC/DEC+5%FEC | CMC | [ |
2012 | TiO2?coated SiO | 72 | 1000 | 0.2 | 1 mol/L LiPF6 in EC/DEC/EMC+10%FEC | PAI | [ |
2013 | SiO/Fe2O3 | 68 | 1893 | 0.16 | 1 mol/L LiPF6 in EC/DEC/DMC | CMC | [ |
2020 | 2DSiOx/0D?MoO2 | 55.7 | 1051.6 | 0.2 | 1 mol/L LiPF6 in EC/EMC+2%FEC | PAA | [ |
2019 | Al@C/SiO2 | 80.47 | 1385 | 0.1 | 1 mol/L LiPF6 in EC/DMC | PVDF | [ |
2019 | SiOx@Fe3O4@FLG | 84.90 | 833.4 | 0.5 | 1 mol/L LiPF6 in EC/DEC/DMC+10%FEC | PVDF | [ |
2019 | C?SiO?MgSiO3?Si | 78.3 | 1608 | 0.15 | 1 mol/L LiPF6 in EC/DEC | PVDF | [ |
2020 | P@C/SiO | 79.2 | 1151.8 | 0.1 | 1 mol/L LiPF6 in EC/DEC/EMC | PVDF | [ |
Year | Material | ICE(%) | Reversible capacity/(mA·h·g-1)) | Current density/(A·g-1) | Electrolyte system | Binder | Ref. |
---|---|---|---|---|---|---|---|
2007 | SiOx?C | 76 | 800 | 0.1 | 1 mol/L LiPF6 in EC/ DEC | PVDF | [ |
2017 | cnSi/SiOx@Cy | 85.53 | 2200 | 1 | 1 mol/L LiPF6 in EC/DEC/DMC+15%FEC | Sodium alginate | [ |
2017 | SiOx/C/ Ni | 76.3 | 1200 | 0.2 | 1 mol/L LiPF6 in EC/DEC/DMC+5%FEC | No | [ |
2018 | SiOx@G | 69 | 1275 | 0.1 | 1 mol/L LiPF6 in EC/DEC/DMC+5%FEC | CMC/SBR | [ |
2019 | SiO@CNTs/C | 60.6 | 821.7 | 1 | 1 mol/L LiPF6 in EC/DEC+5%FEC | CMC | [ |
2021 | SiOx@CNTs/C | 88 | 902 | 1 | 1 mol/L LiPF6 in EC/DEC/EMC+FEC | CMC | [ |
2010 | SiAl0.2O | 67.4 | 1510 | 0.06 | 1 mol/L LiPF6 in EC/DEC/EMC | PAI | [ |
2018 | Sn2Fe@SiOx | 78 | 849 | 0.2 | 1 mol/L LiPF6 in EC/DEC+5%FEC | CMC | [ |
2012 | TiO2?coated SiO | 72 | 1000 | 0.2 | 1 mol/L LiPF6 in EC/DEC/EMC+10%FEC | PAI | [ |
2013 | SiO/Fe2O3 | 68 | 1893 | 0.16 | 1 mol/L LiPF6 in EC/DEC/DMC | CMC | [ |
2020 | 2DSiOx/0D?MoO2 | 55.7 | 1051.6 | 0.2 | 1 mol/L LiPF6 in EC/EMC+2%FEC | PAA | [ |
2019 | Al@C/SiO2 | 80.47 | 1385 | 0.1 | 1 mol/L LiPF6 in EC/DMC | PVDF | [ |
2019 | SiOx@Fe3O4@FLG | 84.90 | 833.4 | 0.5 | 1 mol/L LiPF6 in EC/DEC/DMC+10%FEC | PVDF | [ |
2019 | C?SiO?MgSiO3?Si | 78.3 | 1608 | 0.15 | 1 mol/L LiPF6 in EC/DEC | PVDF | [ |
2020 | P@C/SiO | 79.2 | 1151.8 | 0.1 | 1 mol/L LiPF6 in EC/DEC/EMC | PVDF | [ |
Method | Material | Introduction | ICE of full cell(%) | Matched cathode | Ref. |
---|---|---|---|---|---|
Prelithiation additive | SiO | SLMP was directly sprayed on the surface of the electrode | 89.77 | LiNi1/3Mn1/3Co1/3O2 | [ |
SiO | SLMP was dispersed in xylene solvent and then coated on the surface of the electrode | 88.12 | LiNi1/3Mn1/3Co1/3O2 | [ | |
SiOx | SiOx and molten lithium are thermally alloyed to form LixSi/Li2O composite for prelithiation | 94 | LiFePO4 | [ | |
Self?discharge prelithiation | SiOx | Inserting a resistance buffer layer(RBL) between SiOx anode and Li foil toregulate the rate and degree of prelithiation | 87 | NCM622 | [ |
Electrochemical prelithiation | c?SiOx | Assembling a temporary battery and introduce a rheostat in the external circuit to control the prelithiation rate | 85.34 | LiNi0.8Co0.15Al0.05O2 | [ |
Chemical prelithiation | SiOx | Employing molecularly engineered BP derivatives to adjust the reduction potential of Li?arene(LAC) below 0.2 V drives active Li accommodation in SiOx anodes | 86 | NCM523 | [ |
SiOx/C | Controllable LiBp complex solution prelithiation and high?temperature calcination process were combined to pregenerate LixSiOy in the interior of SiOx/C | 86 | NCM811 | [ |
Method | Material | Introduction | ICE of full cell(%) | Matched cathode | Ref. |
---|---|---|---|---|---|
Prelithiation additive | SiO | SLMP was directly sprayed on the surface of the electrode | 89.77 | LiNi1/3Mn1/3Co1/3O2 | [ |
SiO | SLMP was dispersed in xylene solvent and then coated on the surface of the electrode | 88.12 | LiNi1/3Mn1/3Co1/3O2 | [ | |
SiOx | SiOx and molten lithium are thermally alloyed to form LixSi/Li2O composite for prelithiation | 94 | LiFePO4 | [ | |
Self?discharge prelithiation | SiOx | Inserting a resistance buffer layer(RBL) between SiOx anode and Li foil toregulate the rate and degree of prelithiation | 87 | NCM622 | [ |
Electrochemical prelithiation | c?SiOx | Assembling a temporary battery and introduce a rheostat in the external circuit to control the prelithiation rate | 85.34 | LiNi0.8Co0.15Al0.05O2 | [ |
Chemical prelithiation | SiOx | Employing molecularly engineered BP derivatives to adjust the reduction potential of Li?arene(LAC) below 0.2 V drives active Li accommodation in SiOx anodes | 86 | NCM523 | [ |
SiOx/C | Controllable LiBp complex solution prelithiation and high?temperature calcination process were combined to pregenerate LixSiOy in the interior of SiOx/C | 86 | NCM811 | [ |
1 | Cano Z. P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z., Nat. Energy,2018, 3(4), 279—289 |
2 | Lu J., Chen Z. H., Ma Z. F., Pan F., Curtiss L. A., Amine K., Nat. Nanotechnol.,2016, 11(12), 1031—1038 |
3 | Janek J., Zeier W. G., Nat. Energy,2016, 1(9), 16141—16144 |
4 | Li P., Hwang J. Y., Sun Y. K., ACS Nano,2019, 13(2), 2624—2633 |
5 | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev.,2017, 117(15), 10403—10473 |
6 | Maier J., Nat. Mater.,2005, 4(11), 805—815 |
7 | Dimov N., Kugino S., Yoshio M., Electrochim. Acta,2003, 48(11), 1579—1587 |
8 | Chae S., Choi S. H., Kim N., Sung J., Cho J., Angew. Chem. Int. Ed.,2020, 59(1), 110—135 |
9 | Ashuri M., He Q., Shaw L. L., Nanoscale,2016, 8(1), 74—103 |
10 | Casimir A., Zhang H., Ogoke O., Amine J. C., Lu J., Wu G., Nano Energy,2016, 27, 359—376 |
11 | Cao C., Abate I. I., Sivonxay E., Shyam B., Jia C., Moritz B., Devereaux T. P., Persson K. A., Steinrück H. G., Toney M. F., Joule,2019, 3(3), 762—781 |
12 | Liu Z., Zhao Y., He R., Luo W., Meng J., Yu Q., Zhao D., Zhou L., Mai L., Energy Storage Mater.,2019, 19, 299—305 |
13 | Zhang L., Zhang L., Zhang J., Hao W., Zheng H., J. Mater. Chem. A, 2015, 3(30), 15432—15443 |
14 | Zhang Q., Chen H., Luo L., Zhao B., Luo H., Han X., Wang J., Wang C., Yang Y., Zhu T., Liu M., Energy Environ Sci.,2018, 11(3), 669—681 |
15 | Yoshio M., Tsumura T., Dimov N., J. Power Sources,2005, 146(1/2), 10—14 |
16 | Wu H., Cui Y., Nano Today,2012, 7(5), 414—429 |
17 | Szczech J. R., Jin S., Energy Environ Sci.,2011, 4(1), 56—72 |
18 | Lee J. K., Oh C., Kim N., Hwang J. Y., Sun Y. K., J. Mater. Chem. A,2016, 4(15), 5366—5384 |
19 | Li J. Y., Xu Q., Li G., Yin Y. X., Wan L. J., Guo Y. G., Mater. Chem. Front.,2017, 1(9), 1691—1708 |
20 | Kwon T. W., Choi J. W., Coskun A., Chem. Soc. Rev.,2018, 47(6), 2145—2164 |
21 | Chen T., Wu J., Zhang Q., Su X., J. Power Sources,2017, 363, 126—144 |
22 | Liu Z., Yu Q., Zhao Y., He R., Xu M., Feng S., Li S., Zhou L., Mai L., Chem. Soc. Rev.,2019, 48(1), 285—309 |
23 | Schnurre S. M., Gröbner J., Schmid⁃Fetzer R., J. Non⁃Cryst. Solids,2004, 336(1), 1—25 |
24 | AlKaabi K., Prasad D. L., Kroll P., Ashcroft N. W., Hoffmann R., J. Am. Chem. Soc.,2014, 136(9), 3410—3423 |
25 | Philipp H. R., J. Phys. Chem. Solids,1971, 32(8),1935—1945 |
26 | Philipp H. R., J. Non⁃Cryst. Solids,1972, 8—10, 627—632 |
27 | Brady G. W., J. Phys. Chem.,1959, 63(7), 1119—1120 |
28 | Temkin R. J., J. Non⁃Cryst. Solids,1975, 17(2), 215—230 |
29 | Fuglein E., Schubert U., Chem. Mater.,1999, 11(4), 865—866 |
30 | Hohl A., Wieder T., van Aken P. A., Weirich T. E., Denninger G., Vidal M., Oswald S., Deneke C., Mayer J., Fuess H., J. Non⁃Cryst. Solids,2003, 320(1—3), 255—280 |
31 | Schulmeister K., Mader W., J. Non⁃Cryst. Solids,2003, 320(1—3), 143—150 |
32 | Hirata A., Kohara S., Asada T., Arao M., Yogi C., Imai H., Tan Y., Fujita T., Chen M., Nat. Commun.,2016, 7, 11591 |
33 | Miyachi M., Yamamoto H., Kawai H., Ohta T., Shirakata M., J. Electrochem. Soc.,2005, 152(10), A2089—A2091 |
34 | Yamada M., Inaba A., Ueda A., Matsumoto K., Iwasaki T., Ohzuku T., J. Electrochem. Soc.,2012, 159(10), A1630—A1635 |
35 | Yamamura H., Nobuhara K., Nakanishi S., Iba H., Okada S., J. Ceram. Soc. Jpn.,2011, 119(1395), 855—860 |
36 | Yu B. C., Hwa Y., Park C. M., Sohn H. J., J. Mater. Chem. A, 2013, 1(15), 4820—4825 |
37 | Yu B. C., Hwa Y., Kim J. H., Sohn H. J., Electrochim. Acta,2014, 117, 426—430 |
38 | Jung S. C., Kim H. J., Kim J. H., Han Y. K., J. Phy. Chem. C,2015, 120(2), 886—892 |
39 | Yasuda K., Kashitani Y., Kizaki S., Takeshita K., Fujita T., Shimosaki S., J. Power Sources,2016, 329, 462—472 |
40 | Kim M. K., Jang B. Y., Lee J. S., Kim J. S., Nahm S., J. Power Sources,2013, 244, 115—121 |
41 | Xu K., Chem. Rev.,2014, 114(23), 11503—11618 |
42 | Philippe B., Dedryvère R., Allouche J., Lindgren F., Gorgoi M., Rensmo H., Gonbeau D., Edström K., Chem. Mater.,2012, 24(6), 1107—1115 |
43 | Radvanyi E., Porcher W., de Vito E., Montani A., Franger S., Jouanneau Si Larbi S., Phys. Chem. Chem. Phys.,2014, 16(32), 17142—17153 |
44 | Han J., Chen G., Yan T., Liu H., Shi L., An Z., Zhang J., Zhang D., Chem. Eng. J.,2018, 347, 273—279 |
45 | Zhang F., Yang J., Emergent Mater.,2020, 3(3), 369—380 |
46 | Jiao M., Wang Y., Ye C., Wang C., Zhang W., Liang C., J. Alloys Compd.,2020, 842, 155774 |
47 | Li X., Sun X., Hu X., Fan F., Cai S., Zheng C., Stucky G. D., Nano Energy,2020, 77, 105143 |
48 | Zhang L., Hao W., Wang H., Zhang L., Feng X., Zhang Y., Chen W., Pang H., Zheng H., J. Mater. Chem. A, 2013, 1(26), 7601—7611 |
49 | Zhang J., Zhang L., Xue P., Zhang L., Zhang X., Hao W., Tian J., Shen M., Zheng H., J. Mater. Chem. A, 2015, 3(15), 7810—7821 |
50 | Zeng Y., Huang Y., Liu N., Wang X., Zhang Y., Guo Y., Wu H. H., Chen H., Tang X., Zhang Q., J. Energy. Chem.,2021, 54, 727—735 |
51 | Li Q., Chen D., Li K., Wang J., Zhao J., Electrochim. Acta,2016, 202, 140—146 |
52 | Yang Y., Li J., Chen D., Fu T., Sun D., Zhao J., ChemElectroChem, 2016, 3(5), 757—763 |
53 | Zhang Y., Li K., Ji P., Chen D., Zeng J., Sun Y., Zhang P., Zhao J., J. Mater. Sci.,2017, 52(7), 3630—3641 |
54 | Cao Z., Xia B., Xie X., Zhao J., Electrochim. Acta,2019, 313, 311—320 |
55 | Xu Q., Sun J. K., Yin Y. X., Guo Y. G., Adv. Funct. Mater.,2018, 28(8), 1705235 |
56 | Kim J. H., Sohn H. J., Kim H., Jeong G., Choi W., J. Power Sources,2007, 170(2), 456—459 |
57 | Wu Z. L., Ji S. B., Liu L. K., Xie T., Tan L., Tang H., Sun R. G., Rare Met.,2021, 40(5), 1110—1117 |
58 | Zhuang X., Song P., Chen G., Shi L., Wu Y., Tao X., Liu H., Zhang D., ACS Appl. Mater. Interfaces,2017, 9(34), 28464—28472 |
59 | Xu Q., Sun J. K., Li G., Li J. Y., Yin Y. X., Guo Y. G., Chem. Commun.,2017, 53(89), 12080—12083 |
60 | Xu Q., Sun J. K., Yu Z. L., Yin Y. X., Xin S., Yu S. H., Guo Y. G., Adv. Mater.,2018, 30(25), 1707430 |
61 | Li J., Wang L., Liu F., Liu W., Luo C., Liao Y., Li X., Qu M., Wan Q., Peng G., ChemistrySelect,2019, 4(10), 2918—2925 |
62 | Tian H., Tian H., Yang W., Zhang F., Yang W., Zhang Q., Wang Y., Liu J., Silva S. R. P., Liu H., Wang G., Adv. Funct. Mater.,2021, 2101796 |
63 | Jeong G., Kim Y. U., Krachkovskiy S. A., Lee C. K., Chem. Mater.,2010, 22(19), 5570—5579 |
64 | Miyachi M., Yamamoto H., Kawai H., J. Electrochem. Soc.,2007, 154(4), A376—A380 |
65 | Zhang H., Hu R., Liu Y., Cheng X., Liu J., Lu Z., Zeng M., Yang L., Liu J., Zhu M., Energy Storage Mater.,2018, 13, 257—266 |
66 | Jeong G., Kim J. H., Kim Y. U., Kim Y. J., J. Mater. Chem.,2012, 22(16), 7999—8004 |
67 | Zhou M., Gordin M. L., Chen S., Xu T., Song J., Lv D., Wang D., Electrochem. Commun.,2013, 28, 79—82 |
68 | Yamamura H., Nakanishi S., Iba H., J. Power Sources,2013, 232, 264—269 |
69 | Kim S., Yoo H., Kim H., RSC Adv.,2020, 10(36), 21375—21381 |
70 | Cui J., Yang J., Man J., Li S., Yin J., Ma L., He W., Sun J., Hu J., Electrochim. Acta,2019, 300, 470—481 |
71 | Liao C., Wu S., Chem. Eng. J.,2019, 355, 805—814 |
72 | Zhang Y., Guo G., Chen C., Jiao Y., Li T., Chen X., Yang Y., Yang D., Dong A., J. Power Sources,2019, 426, 116—123 |
73 | Zhang H., Liu K., Liu Y., Lang Z., He W., Ma L., Man J., Jia G., Cui J., Sun J., J. Power Sources,2020, 447, 227400 |
74 | Vaughey J. T., Liu G., Zhang J. G., MRS Bull.,2014, 39(5), 429—435 |
75 | Jarvis C. R., Lain M. J., Yakovleva M. V., Gao Y., J. Power Sources,2006, 162(2), 800—802 |
76 | Xiang B., Wang L., Liu G., Minor A. M., J. Electrochem. Soc.,2013, 160(3), A415—A419 |
77 | Zhao H., Wang Z., Lu P., Jiang M., Shi F., Song X., Zheng Z., Zhou X., Fu Y., Abdelbast G., Xiao X., Liu Z., Battaglia V. S., Zaghib K., Liu G., Nano Lett.,2014, 14(11), 6704—6710 |
78 | Cassel F., Chua D., Lane M., Yakovleva M., Gao Y., Au G., ECS Trans.,2008, 11, 157—166 |
79 | Jarvis C. R., Lain M. J., Gao Y., Yakovleva M., J. Power Sources,2005, 146(1/2), 331—334 |
80 | Ai G., Wang Z., Zhao H., Mao W., Fu Y., Yi R., Gao Y., Battaglia V., Wang D., Lopatin S., Liu G., J. Power Sources,2016, 309, 33—41 |
81 | Zhao J., Lu Z., Liu N., Lee H. W., McDowell M. T., Cui Y., Nat. Commun.,2014, 5, 5088 |
82 | Zhao J., Lee H. W., Sun J., Yan K., Liu Y., Liu W., Lu Z., Lin D., Zhou G., Cui Y., Proc. Natl. Acad. Sci. USA,2016, 113(27), 7408—7413 |
83 | Liu N., Hu L., McDowell M. T., Jackson A., Cui Y., ACS Nano,2011, 5(8), 6487—6493 |
84 | Meng Q., Li G., Yue J., Xu Q., Yin Y. X., Guo Y. G., ACS Appl. Mater. Interfaces,2019, 11(35), 32062—32068 |
85 | Kim H. J., Choi S., Lee S. J., Seo M. W., Lee J. G., Deniz E., Lee Y. J., Kim E. K., Choi J. W., Nano Lett.,2016, 16(1), 282—288 |
86 | Scott M. G., Whitehead A. H., Owen J. R., J. Electrochem. Soc.,1998, 145(5), 1506—1510 |
87 | Tabuchi T., Yasuda H., Yamachi M., J. Power Sources,2005, 146(1/2), 507—509 |
88 | Jang J., Kang I., Choi J., Jeong H., Yi K. W., Hong J., Lee M., Angew. Chem. Int. Ed.,2020, 59(34), 14473—14480 |
89 | Yang M. Y., Li G., Zhang J., Tian Y. F., Yin Y. X., Zhang C. J., Jiang K. C., Xu Q., Li H. L., Guo Y. G., ACS Appl. Mater. Interfaces,2020, 12(24), 27202—27209 |
90 | Zhang L., Zhang L., Chai L., Xue P., Hao W., Zheng H., J. Mater. Chem. A, 2014, 2(44), 19036—19045 |
91 | Zhu X., Zhang F., Zhang L., Zhang L., Song Y., Jiang T., Sayed S., Lu C., Wang X., Sun J., Liu Z., Adv. Funct. Mater., 2018, 28(11), 1705015 |
92 | Yom J. H., Hwang S. W., Cho S. M., Yoon W. Y., J. Power Sources,2016, 311, 159—166 |
93 | Guo C., Wang D., Liu T., Zhu J., Lang X., J. Mater. Chem. A,2014, 2(10), 3521—3527 |
94 | Park E., Park M. S., Lee J., Kim K. J., Jeong G., Kim J. H., Kim Y. J., Kim H., ChemSusChem, 2015, 8(4), 688—694 |
95 | Zhang J., Zhang C., Liu Z., Zheng J., Zuo Y., Xue C., Li C., Cheng B., J. Power Sources,2017, 339, 86—92 |
96 | Yuge R., Toda A., Fukatsu K., Tamura N., Manako T., Nakahara K., Nakano K., J. Electrochem. Soc.,2013, 160(10), A1789—A1793 |
97 | Ren Y., Li M., J. Power Sources,2016, 306, 459—466 |
98 | Li Z., He Q., He L., Hu P., Li W., Yan H., Peng X., Huang C., Mai L., J. Mater. Chem. A, 2017, 5(8), 4183—4189 |
99 | Cui J., Cui Y., Li S., Sun H., Wen Z., Sun J., ACS Appl. Mater. Interfaces,2016, 8(44), 30239—30247 |
100 | Komaba S., Shimomura K., Yabuuchi N., Ozeki T., Yui H., Konno K., J. Phys. Chem. C,2011, 115(27), 13487—13495 |
101 | Guerfi A., Charest P., Dontigny M., Trottier J., Lagacé M., Hovington P., Vijh A., Zaghib K., J. Power Sources,2011, 196(13), 5667—5673 |
102 | Zhao T., Meng Y., Yin H., Guo K., Ji R., Zhang G., Zhang Y., Chem. Phys. Lett.,2020, 742, 137145 |
103 | Hu Z., Zhao L., Jiang T., Liu J., Rashid A., Sun P., Wang G., Yan C., Zhang L., Adv. Funct. Mater., 2019, 29(45), 1906548 |
104 | Choi N. S., Yew K. H., Lee K. Y., Sung M., Kim H., Kim S. S., J. Power Sources,2006, 161(2), 1254—1259 |
105 | Chen L., Wang K., Xie X., Xie J., J. Power Sources,2007, 174(2), 538—543 |
106 | Nguyen C. C., Choi H., Song S. W., J. Electrochem. Soc.,2013, 160(6), A906—A914 |
[1] | LI Shiheng, WANG Chao, LU Zhenda. Challenges and Recent Progress of Prelithiation for Si-Based Anodes in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1530. |
[2] | LIU Tiefeng, ZHANG Ben, SHENG Ouwei, NAI Jianwei, WANG Yao, LIU Yujing, TAO Xinyong. Research Progress of the Binders for the Silicon Anode [J]. Chem. J. Chinese Universities, 2021, 42(5): 1446. |
[3] | WANG Renheng, XIAO Zhe, LI Yan, SUN Yiling, FAN Shuting, ZHENG Junchao, QIAN Zhengfang, HE Zhenjiang. Synthesis of Li2FeP2O7 Cathode Material at Different Temperatures and Its Electrochemical Performance for Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1299. |
[4] | HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3547. |
[5] | ZHANG Chenyang,WEN Yuehua,ZHAO Pengcheng,CHENG Jie,QIU Jingyi,SUN Yanzhi. Effect of Organic Carbon Source on Performance of LiTi2(PO4)3/C Composite Electrodes in Aqueous Solutions [J]. Chem. J. Chinese Universities, 2020, 41(6): 1352. |
[6] | JI Tianyi, LIU Xiaoxu, ZHAO Jiupeng, LI Yao. Synthesis and Lithium-storage Characteristics of Three-dimensional Cross-linked Graphene Nanofibers † [J]. Chem. J. Chinese Universities, 2020, 41(4): 821. |
[7] | FANG Liang,DING Xiaoli,SONG Yun,LIU Dongming,LI Yongtao,ZHANG Qingan. Effect of Morphological Tuning on Electrochemical Performance of Perovskite LaCoO3 Anodes† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1456. |
[8] | Yuzhen DUAN,Jinyu ZHU,Junming GUO,Mingwu XIANG,Xiaofang LIU,Hongli BAI,Changwei SU. Synthesis and Electrochemical Properties of Spinel Lithium Manganese Cathode Material LiNi0.01Co0.03Mn1.96O4 † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2574. |
[9] | LI Xiangnan,YU Mingming,FAN Yong,WANG Qiuxian,ZHANG Huishuang,YANG Shuting. Study on Electrochemical Performances of N-doped P/C Composite as Anode Material of Lithium Ion Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2360. |
[10] | WU Wei, LIU Yuchun, ZHU Guancun, AN Jiayu, DOU Guangpeng, WANG Yuyan, LIU Jing, SUN Donglan, GUO Yeping. Application of Polyethylene Separator Modified by Methyl Acrylic Polymer in Lithium Ion Battery † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2332. |
[11] | LI Yi, LI Chun, YU Kaifeng. Preparation, Characterization and Electrochemical Properties of Mesoporous Biomass Carbon Derived from Corn Stalk† [J]. Chem. J. Chinese Universities, 2018, 39(4): 607. |
[12] | SUN Bing,JIANG Shang,WANG Runwei,NI Ling,QIU Shilun,ZHANG Zongtao. Preparation and Application of High Performance Lithium Titanate/reduced Graphene Oxide Nanocomposites for Lithium Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2767. |
[13] | AI Shujuan, ZONG Chengxing, WU Wei, FENG Jingjing, JIN Can, FU Fengzhi, LIU Jing, SUN Donglan, ZHENG Qin, GUO Yeping. Effect of Derivatives of Glycerol Sulfite as Electrolyte Additive on Electrochemical Performance of Lithium Ion Battery† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2520. |
[14] | WANG Kun, HUANG Mengyi, ZHANG Xiaosong, HUANG Junjie, DENG Xiang, LIU Changlu. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2@C Composite† [J]. Chem. J. Chinese Universities, 2018, 39(1): 141. |
[15] | XU Dan, XIAO Shanshan, WU Pan, PAN Ying, CHEN Lihua, SU Baolian, XUE Ming, QIU Shilun. Synthesis of Organodiphosphonate MOFs-derived Ni2P/C Composite† [J]. Chem. J. Chinese Universities, 2018, 39(1): 19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||