Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (4): 1188.doi: 10.7503/cjcu20200591
• Review • Previous Articles Next Articles
CAI Rui1,2, LIU Jianbo3(), WU Xiaochun1,2(
)
Received:
2020-08-23
Online:
2021-04-10
Published:
2020-12-21
Contact:
LIU Jianbo
E-mail:linyibm@163.com;wuxc@nanoctr.cn
Supported by:
CLC Number:
TrendMD:
CAI Rui, LIU Jianbo, WU Xiaochun. Research Progress of Noble Metal⁃based Nanozymes[J]. Chem. J. Chinese Universities, 2021, 42(4): 1188.
1 | Willets K. A., van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267—297 |
2 | Saha K., Agasti S. S., Kim C., Li X., Rotello V. M., Chem. Rev., 2012, 112(5), 2739—2779 |
3 | Chen H., Shao L., Li Q., Wang J., Chem. Soc. Rev., 2013, 42(7), 2679—2724 |
4 | Zeng J., Zhang Q., Chen J., Xia Y., Nano Lett., 2010, 10(1), 30—35 |
5 | Kumar A., Kumar S., Rhim W. K., Kim G. H., Nam J. M., J. Am. Chem. Soc., 2014, 136(46), 16317—16325 |
6 | Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nat. Nanotechnol., 2007, 2(9), 577—583 |
7 | Kim M. I., Ye Y., Woo M. A., Lee J., Park H. G., Adv. Healthc. Mater., 2014, 3(1), 36—41 |
8 | Gao Z., Lv S., Xu M., Tang D., Analyst, 2017, 142(6), 911—917 |
9 | He W., Wu X., Liu J., Hu X., Zhang K., Hou S., Zhou W., Xie S., Chem. Mater., 2010, 22(9), 2988—2994 |
10 | Zhang W., Niu X., Meng S., Li X., He Y., Pan J., Qiu F., Zhao H., Lan M., Sens. Actuators B, 2018, 273, 400—407 |
11 | Wang C., Shi Y., Dan Y. Y., Nie X. G., Li J., Xia X. H., Chem. Eur. J., 2017, 23(28), 6717—6723 |
12 | Huang Y., Ren J., Qu X., Chem. Rev., 2019, 119(6), 4357—4412 |
13 | Wu J., Wang X., Wang Q., Lou Z., Li S., Zhu Y., Qin L., Wei H., Chem. Soc. Rev., 2019, 48(4), 1004—1076 |
14 | Wu Y., Chen Y., Li Y., Huang J., Yu H., Wang Z., Sens. Actuators B, 2018, 270, 443—451 |
15 | Chen L., Sha L., Qiu Y., Wang G., Jiang H., Zhang X., Nanoscale, 2015, 7(7), 3300—3308 |
16 | Cai K., Lv Z., Chen K., Huang L., Wang J., Shao F., Wang Y., Han H., Chem. Commun., 2013, 49(54), 6024—6026 |
17 | Fang G., Li W., Shen X., Perez⁃Aguilar J. M., Chong Y., Gao X., Chai Z., Chen C., Ge C., Zhou R., Nat. Commun., 2018, 9(1), 129 |
18 | Cao G. J., Jiang X., Zhang H., Croley T. R., Yin J. J., RSC Advances, 2017, 7(82), 52210—52217 |
19 | Cao G. J., Chen Y., Chen X., Weng P., Lin R. G., J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(1), 14—25 |
20 | He S. B., Zhuang Q. Q., Yang L., Lin M. Y., Kuang Y., Peng H. P., Deng H. H., Xia X. H., Chen W., Anal. Chem., 2020, 92(1), 1635—1642 |
21 | Su H., Liu D. D., Zhao M., Hu W. L., Xue S. S., Cao Q., Le X. Y., Ji L. N., Mao Z. W., ACS Appl. Mater. Interfaces, 2015, 7(15), 8233—8242 |
22 | Zheng S., Gu H., Yin D., Zhang J., Li W., Fu Y., Colloids Surf. A,2020, 589, 124444 |
23 | Borghei Y. S., Hosseinkhani S., Microchim. Acta,2019, 186(12), 845 |
24 | He X., Tan L., Chen D., Wu X., Ren X., Zhang Y., Meng X., Tang F., Chem. Commun., 2013, 49(41), 4643—4645 |
25 | Liang S., Deng X., Chang Y., Sun C., Shao S., Xie Z., Xiao X., Ma P., Zhang H., Cheng Z., Lin J., Nano Lett., 2019, 19(6), 4134—4145 |
26 | Zhao H., Guo Y., Zhu S., Song Y., Jin J., Ji W., Song W., Zhao B., Yang B., Ozaki Y., Appl. Surf. Sci., 2017, 410, 42—50 |
27 | Liang S., Deng X., Xu G., Xiao X., Wang M., Guo X., Ma P. A., Cheng Z., Zhang D., Lin J., Adv. Funct. Mater., 2020, 30(13), 1908598 |
28 | Fan L., Xu X., Zhu C., Han J., Gao L., Xi J., Guo R., ACS Appl. Mater. Interfaces, 2018, 10(5), 4502—4511 |
29 | Fan H., Li Y., Liu J., Cai R., Gao X., Zhang H., Ji Y., Nie G., Wu X., ACS Appl. Mater. Interfaces, 2019, 11(49), 45416—45426 |
30 | Hu X., Saran A., Hou S., Wen T., Ji Y., Liu W., Zhang H., Wu X., Chin. Sci. Bull., 2014, 59(21), 2588—2596 |
31 | Comotti M., Della Pina C., Matarrese R., Rossi M., Angew. Chem. Int. Ed., 2004, 43(43), 5812—5815 |
32 | Lin Y., Li Z., Chen Z., Ren J., Qu X., Biomaterials, 2013, 34(11), 2600—2610 |
33 | Yu C. J., Chen T. H., Jiang J. Y., Tseng W. L., Nanoscale, 2014, 6(16), 9618—9624 |
34 | Liu Y., Wu H., Chong Y., Wamer W. G., Xia Q., Cai L., Nie Z., Fu P. P., Yin J. J., ACS Appl. Mater. Interfaces, 2015, 7(35), 19709—19717 |
35 | Clark A. J., Coury E. L., Meilhac A. M., Petty H. R., Nanotechnology, 2016, 27(6), 065101 |
36 | Zhou Y. T., He W., Wamer W. G., Hu X., Wu X., Lo Y. M., Yin J. J., Nanoscale, 2013, 5(4), 1583—1591 |
37 | Kajita M., Hikosaka K., Iitsuka M., Kanayama A., Toshima N., Miyamoto Y., Free Radical Res., 2007, 41(6), 615—626 |
38 | He W., Zhou Y. T., Wamer W. G., Hu X., Wu X., Zheng Z., Boudreau M. D., Yin J. J., Biomaterials, 2013, 34(3), 765—773 |
39 | Li J., Liu W., Wu X., Gao X., Biomaterials, 2015, 48, 37—44 |
40 | Liu C., Luo L., Zeng L., Xing J., Xia Y., Sun S., Zhang L., Yu Z., Yao J., Yu Z., Akakuru O. U., Saeed M., Wu A., Small, 2018, 14(35), e1801851 |
41 | Jv Y., Li B., Cao R., Chem. Commun., 2010, 46(42), 8017—8019 |
42 | Weerathunge P., Behera B. K., Zihara S., Singh M., Prasad S. N., Hashmi S., Mariathomas P. R. D., Bansal V., Ramanathan R., Anal. Chim. Acta,2019, 1083, 157—165 |
43 | Tan X., Zhang L., Tang Q., Zheng G., Li H., Microchim. Acta,2019, 186(5), 280 |
44 | Cai S., Xiao W., Duan H., Liang X., Wang C., Yang R., Li Y., Nano Research, 2018, 11(12), 6304—6315 |
45 | Xia X., Zhang J., Lu N., Kim M. J., Ghale K., Xu Y., Mckenzie E., Liu J., Yet H., ACS Nano, 2015, 9(10), 9994—10004 |
46 | Fan J., Yin J. J., Ning B., Wu X., Hu Y., Ferrari M., Anderson G. J., Wei J., Zhao Y., Nie G., Biomaterials, 2011, 32(6), 1611—1618 |
47 | Mvango S., Mashazi P., Mater. Sci. Eng. C, 2019, 96, 814—823 |
48 | Lin Y., Ren J., Qu X., Adv. Mater., 2014, 26(25), 4200—4217 |
49 | Liu Y., Wu H., Li M., Yin J. J., Nie Z., Nanoscale, 2014, 6(20), 11904—11910 |
50 | Wen T., He W., Chong Y., Liu Y., Yin J. J., Wu X., Phys. Chem. Chem. Phys., 2015, 17(38), 24937—24943 |
51 | Cao G. J., Jiang X., Zhang H., Zheng J., Croley T. R., Yin J. J., J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev., 2017, 35(4), 223—238 |
52 | Dashtestani F., Ghourchian H., Najafi A., Mater. Sci. Eng. C, 2019, 94, 831—840 |
53 | Slocik J. M., Govorov A. O., Naik R. R., Angew. Chem. Int. Ed., 2008, 47(29), 5335—5339 |
54 | Yu T., Wang W., Chen J., Zeng Y., Li Y., Yang G., Li Y., J. Phys. Chem. C, 2012, 116(19), 10516—10521 |
55 | Hikosaka K., Kim J., Kajita M., Kanayama A., Miyamoto Y., Colloids Surf. B, 2008, 66(2), 195—200 |
56 | Sun H., Zhao A., Gao N., Li K., Ren J., Qu X., Angew. Chem. Int. Ed., 2015, 54(24), 7176—7180 |
57 | Shen X., Liu W., Gao X., Lu Z., Wu X., Gao X., J. Am. Chem. Soc., 2015, 137(50), 15882—15891 |
58 | Song Y., Xia X., Wu X., Wang P., Qin L., Angew. Chem. Int. Ed., 2014, 53(46), 12451—12455 |
59 | Ye H., Mohar J., Wang Q., Catalano M., Kim M. J., Xia X., Chin. Sci. Bull., 2016, 61(22), 1739—1745 |
60 | Chen C., Fan S., Li C., Chong Y., Tian X., Zheng J., Fu P. P., Jiang X., Wamer W. G., Yin J. J., J. Mater. Chem. B, 2016, 4(48), 7895—7901 |
61 | Kalantari M., Ghosh T., Liu Y., Zhang J., Zou J., Lei C., Yu C., ACS Appl. Mater. Interfaces, 2019, 11(14), 13264—13272 |
62 | Higashi Y., Mazumder J., Yoshikawa H., Saito M., Tamiya E., Anal. Chem., 2018, 90(9), 5773—5780 |
63 | Ge C., Fang G., Shen X., Chong Y., Wamer W. G., Gao X., Chai Z., Chen C., Yin J. J., ACS Nano, 2016, 10(11), 10436—10445 |
64 | Chong Y., Dai X., Fang G., Wu R., Zhao L., Ma X., Tian X., Lee S., Zhang C., Chen C., Chai Z., Ge C., Zhou R., Nat. Commun., 2018, 9(1), 4861 |
65 | Tseng C. W., Chang H. Y., Chang J. Y., Huang C. C., Nanoscale, 2012, 4(21), 6823—6830 |
66 | Zhang K., Hu X., Liu J., Yin J. J., Hou S., Wen T., He W., Ji Y., Guo Y., Wang Q., Wu X., Langmuir, 2011, 27(6), 2796—2803 |
67 | Mikolajczak D. J., Berger A. A., Koksch B., Angew. Chem. Int. Ed., 2020, 59(23), 8776—8785 |
68 | Hu L., Liao H., Feng L., Wang M., Fu W., Anal. Chem., 2018, 90(10), 6247—6252 |
69 | Wang S., Chen W., Liu A. L., Hong L., Deng H. H., Lin X. H., ChemPhysChem, 2012, 13(5), 1199—1204 |
70 | Zhang Z., Tian Y., Huang P., Wu F. Y., Talanta, 2020, 208, 120342 |
71 | Fan L., Lou D., Wu H., Zhang X., Zhu Y., Gu N., Zhang Y., Adv. Mater. Interfaces, 2018, 5(22), 1801070 |
72 | Hu W. C., Younis M. R., Zhou Y., Wang C., Xia X. H., Small, 2020, 16(23), e2000553 |
73 | Li X., Pu Z., Zhou H., Zhang W., Niu X., He Y., Xu X., Qiu F., Pan J., Ni L., J. Mater. Sci., 2018, 53(19), 13912—13923 |
74 | Dong Y., Zhang J., Jiang P., Wang G., Wu X., Zhao H., Zhang C., New J. Chem., 2015, 39(5), 4141—4146 |
75 | Chen Y., Yuchi Q., Li T., Yang G., Miao J., Huang C., Liu J., Li A., Qin Y., Zhang L., Sens. Actuators B, 2020, 305, 127436 |
76 | Tao Y., Lin Y., Huang Z., Ren J., Qu X., Adv. Mater., 2013, 25(18), 2594—2599 |
77 | Maji S. K., Yu S., Chung K., Sekkarapatti Ramasamy M., Lim J. W., Wang J., Lee H., Kim D. H., ACS Appl. Mater. Interfaces, 2018, 10(49), 42068—42076 |
78 | Liu J., Hu X., Hou S., Wen T., Liu W., Zhu X., Wu X., Chem. Commun. (Camb.), 2011, 47(39), 10981—10983 |
79 | Jiang C., Wei X., Bao S., Tu H., Wang W., RSC Adv., 2019, 9(71), 41561—41568 |
80 | Weerathunge P., Ramanathan R., Shukla R., Sharma T. K., Bansal V., Anal. Chem., 2014, 86(24), 11937—11941 |
81 | Pan N., Wang L. Y., Wu L. L., Peng C. F., Xie Z. J., Microchim. Acta, 2016, 184(1), 65—72 |
82 | Wu G. W., He S. B., Peng H. P., Deng H. H., Liu A. L., Lin X. H., Xia X. H., Chen W., Anal. Chem., 2014, 86(21), 10955—10960 |
83 | Liao H., Liu G., Liu Y., Li R., Fu W., Hu L., Chem. Commun. (Camb.), 2017, 53(73), 10160—10163 |
84 | Gao M., An P., Rao H., Niu Z., Xue X., Luo M., Liu X., Xue Z., Lu X., Analyst, 2020, 145(4), 1279—1287 |
85 | Tao Y., Lin Y., Ren J., Qu X., Biosens. Bioelectron., 2013, 42, 41—46 |
86 | Jin L., Meng Z., Zhang Y., Cai S., Zhang Z., Li C., Shang L., Shen Y., ACS Appl. Mater. Interfaces, 2017, 9(11), 10027—10033 |
87 | Wang W., Bao T., Zeng X., Xiong H., Wen W., Zhang X., Wang S., Biosens. Bioelectron., 2017, 91, 183—189 |
88 | Wang Z., Yang X., Feng J., Tang Y., Jiang Y., He N., Analyst, 2014, 139(23), 6088—6091 |
89 | Wang G. L., Jin L. Y., Wu X. M., Dong Y. M., Li Z. J., Anal. Chim. Acta, 2015, 871, 1—8 |
90 | Wu L., Yin W., Tang K., Shao K., Li Q., Wang P., Zuo Y., Lei X., Lu Z., Han H., Biosens. Bioelectron., 2016, 82, 177—184 |
91 | Hu J., Ni P., Dai H., Sun Y., Wang Y., Jiang S., Li Z., RSC Adv., 2015, 5(21), 16036—16041 |
92 | Zheng C., Zheng A. X., Liu B., Zhang X. L., He Y., Li J., Yang H. H., Chen G., Chem. Commun. (Camb.), 2014, 50(86), 13103—13106 |
93 | Hu D., Sheng Z., Fang S., Wang Y., Gao D., Zhang P., Gong P., Ma Y., Cai L., Theranostics, 2014, 4(2), 142—153 |
94 | Ge S., Liu F., Liu W., Yan M., Song X., Yu J. H., Chem. Commun. (Camb.), 2014, 50(4), 475—477 |
95 | Dehghani Z., Hosseini M., Mohammadnejad J., Bakhshi B., Rezayan A. H., Microchim. Acta, 2018, 185(10), 448 |
96 | Zhan L., Li C. M., Wu W. B., Huang C. Z., Chem. Commun. (Camb.), 2014, 50(78), 11526—11528 |
97 | Long L., Cai R., Liu J., Wu X., Front. Chem., 2020, 8, 463 |
98 | Tao Y., Ju E., Ren J., Qu X., Adv. Mater., 2015, 27(6), 1097—1104 |
99 | Chen S., Quan Y., Yu Y. L., Wang J. H., ACS Biomater. Sci. Eng., 2017, 3(3), 313—321 |
100 | Zhu X., Gong Y., Liu Y., Yang C., Wu S., Yuan G., Guo X., Liu J., Qin X., Biomaterials, 2020, 242, 119923 |
101 | Gao Z., Li Y., Zhang Y., Cheng K., An P., Chen F., Chen J., You C., Zhu Q., Sun B., ACS Appl. Mater. Interfaces, 2020, 12(2), 1963—1972 |
102 | Xi J., Wang W., Da L., Zhang J., Fan L., Gao L., ACS Biomater. Sci. Eng., 2018, 4(3), 1083—1091 |
103 | Ma Y. C., Zhu Y. H., Tang X. F., Hang L. F., Jiang W., Li M., Khan M. I., You Y. Z., Wang Y. C., Biomater. Sci., 2019, 7(7), 2740—2748 |
104 | Jawaid P., Rehman M., Yoshihisa Y., Li P., Zhao Q., Hassan M. A., Miyamoto Y., Shimizu T., Kondo T., Apoptosis, 2014, 19(6), 1006—1016 |
105 | Armada⁃Moreira A., Taipaleenmaki E., Baekgaard⁃Laursen M., Schattling P. S., Sebastiao A. M., Vaz S. H., Stadler B., ACS Appl. Mater. Interfaces, 2018, 10(9), 7581—7592 |
106 | Darabdhara G., Das M. R., J. Hazard. Mater., 2019, 368, 365—377 |
107 | Cai Q., Lu S., Liao F., Li Y., Ma S., Shao M., Nanoscale, 2014, 6(14), 8117—8123 |
108 | Zhang S., Li H., Wang Z., Liu J., Zhang H., Wang B., Yang Z., Nanoscale, 2015, 7(18), 8495—8502 |
[1] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[3] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[4] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[5] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[6] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[7] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[8] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[9] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[10] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[11] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[12] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[13] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[14] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[15] | HE Beibei, YANG Kuihua, LYU Rui. Construction of Mn-Cu Bimetal Containing Phyllosilicate Nanozyme and Evaluation of the Enzyme-like Properties [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||