Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (9): 2061.doi: 10.7503/cjcu20200250
• Physical Chemistry • Previous Articles Next Articles
ZHANG Guoqiang1, SUN Yuchen1, SHI Yabo1, ZHENG Huayan1, LI Zhong1(), SHANGGUAN Ju1, LIU Shoujun2, SHI Pengzheng1,2
Received:
2020-05-06
Online:
2020-09-10
Published:
2020-09-02
Contact:
LI Zhong
E-mail:lizhong@tyut.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Guoqiang, SUN Yuchen, SHI Yabo, ZHENG Huayan, LI Zhong, SHANGGUAN Ju, LIU Shoujun, SHI Pengzheng. Surface Properties of Ce1-xMnxO2 Catalyst on the Catalytic Activities for Direct Synthesis of DMC from CO2 and Methanol[J]. Chem. J. Chinese Universities, 2020, 41(9): 2061.
Sample | 2θ/(°) | Interplanar spacing/nm | Lattice parameter/nm | Particle size*/nm |
---|---|---|---|---|
CeO2 | 28.50 | 0.31293 | 0.54201 | 10.106 |
Ce0.983Mn0.017O2 | 28.53 | 0.31260 | 0.54145 | 10.326 |
Ce0.956Mn0.044O2 | 28.55 | 0.31250 | 0.54126 | 9.570 |
Ce0.91Mn0.09O2 | 28.58 | 0.31239 | 0.54108 | 8.782 |
Ce0.864Mn0.136O2 | 28.61 | 0.31207 | 0.54052 | 8.987 |
Sample | 2θ/(°) | Interplanar spacing/nm | Lattice parameter/nm | Particle size*/nm |
---|---|---|---|---|
CeO2 | 28.50 | 0.31293 | 0.54201 | 10.106 |
Ce0.983Mn0.017O2 | 28.53 | 0.31260 | 0.54145 | 10.326 |
Ce0.956Mn0.044O2 | 28.55 | 0.31250 | 0.54126 | 9.570 |
Ce0.91Mn0.09O2 | 28.58 | 0.31239 | 0.54108 | 8.782 |
Ce0.864Mn0.136O2 | 28.61 | 0.31207 | 0.54052 | 8.987 |
Catalyst | SBET/(m2·g-1) | Vp/(cm3·g-1) | Pore size/nm |
---|---|---|---|
CeO2 | 145 | 0.60 | 11.6 |
Ce0.983Mn0.017O2 | 145 | 0.62 | 12.2 |
Ce0.956Mn0.044O2 | 147 | 0.58 | 11.1 |
Ce0.910Mn0.090O2 | 145 | 0.63 | 12.0 |
Ce0.864Mn0.136O2 | 147 | 0.68 | 12.8 |
Catalyst | SBET/(m2·g-1) | Vp/(cm3·g-1) | Pore size/nm |
---|---|---|---|
CeO2 | 145 | 0.60 | 11.6 |
Ce0.983Mn0.017O2 | 145 | 0.62 | 12.2 |
Ce0.956Mn0.044O2 | 147 | 0.58 | 11.1 |
Ce0.910Mn0.090O2 | 145 | 0.63 | 12.0 |
Ce0.864Mn0.136O2 | 147 | 0.68 | 12.8 |
Sample | CO2 adsorptiona/(mmol·g-1) | NH3 adsorptionb/(mmol·g-1) | ||||
---|---|---|---|---|---|---|
Weak(<200 ℃) | Moderate(200―400 ℃) | Strong(>400 ℃) | Weak(<200 ℃) | Moderate(200―400 ℃) | Strong(>400 ℃) | |
CeO2 | 0.226 | 0.046 | 0.017 | 0.723 | 0.027 | 0.048 |
Ce0.983Mn0.017O2 | 0.156 | 0.072 | 0.020 | 0.549 | 0.057 | 0.036 |
Ce0.956Mn0.044O2 | 0.141 | 0.075 | 0.032 | 0.204 | 0.094 | 0.038 |
Ce0.910Mn0.090O2 | 0.121 | 0.110 | 0.036 | 0.186 | 0.140 | 0.056 |
Ce0.864Mn0.136O2 | 0.102 | 0.120 | 0.047 | 0.220 | 0.134 | 0.064 |
Sample | CO2 adsorptiona/(mmol·g-1) | NH3 adsorptionb/(mmol·g-1) | ||||
---|---|---|---|---|---|---|
Weak(<200 ℃) | Moderate(200―400 ℃) | Strong(>400 ℃) | Weak(<200 ℃) | Moderate(200―400 ℃) | Strong(>400 ℃) | |
CeO2 | 0.226 | 0.046 | 0.017 | 0.723 | 0.027 | 0.048 |
Ce0.983Mn0.017O2 | 0.156 | 0.072 | 0.020 | 0.549 | 0.057 | 0.036 |
Ce0.956Mn0.044O2 | 0.141 | 0.075 | 0.032 | 0.204 | 0.094 | 0.038 |
Ce0.910Mn0.090O2 | 0.121 | 0.110 | 0.036 | 0.186 | 0.140 | 0.056 |
Ce0.864Mn0.136O2 | 0.102 | 0.120 | 0.047 | 0.220 | 0.134 | 0.064 |
Catalyst | Molar fraction(%) | |||||
---|---|---|---|---|---|---|
Ce3+ | Ce4+ | OV | Mn4+ | Mn3+ | Mn2+ | |
CeO2 | 10.8 | 89.2 | 5.6 | — | — | — |
Ce0.983Mn0.017O2 | 14.6 | 85.4 | 6.9 | 8.8 | 76.8 | 14.3 |
Ce0.956Mn0.044O2 | 11.1 | 88.9 | 6.2 | 12.5 | 76.4 | 11.1 |
Ce0.910Mn0.090O2 | 10.7 | 89.3 | 4.9 | 15.7 | 77.2 | 7.1 |
Ce0.864Mn0.136O2 | 9.8 | 90.2 | 4.5 | 19.4 | 73.5 | 7.1 |
Catalyst | Molar fraction(%) | |||||
---|---|---|---|---|---|---|
Ce3+ | Ce4+ | OV | Mn4+ | Mn3+ | Mn2+ | |
CeO2 | 10.8 | 89.2 | 5.6 | — | — | — |
Ce0.983Mn0.017O2 | 14.6 | 85.4 | 6.9 | 8.8 | 76.8 | 14.3 |
Ce0.956Mn0.044O2 | 11.1 | 88.9 | 6.2 | 12.5 | 76.4 | 11.1 |
Ce0.910Mn0.090O2 | 10.7 | 89.3 | 4.9 | 15.7 | 77.2 | 7.1 |
Ce0.864Mn0.136O2 | 9.8 | 90.2 | 4.5 | 19.4 | 73.5 | 7.1 |
20 | Meng L., Wang J., Sun Z., Zhu J., Li H., Wang J., Shen M., J. Rare Earths, 2018, 36(2), 142—147 |
21 | Qi G., Li W., Catal. Today, 2015, 258, 205—213 |
22 | Ren S., Yang J., Zhang T., Jiang L., Long H., Guo F., Kong M., Chem. Eng. Res. Des., 2018, 133, 1—10 |
23 | Yao X., Ma K., Zou W., He S., An J., Yang F., Dong L., Chin. J. Catal., 2017, 38(1), 146—159 |
24 | Dai B., Zhou G., Ge S., Xie H., Jiao Z., Zhang G., Xiong K., Can. J. Chem. Eng., 2017, 95(4), 634—642 |
25 | Wang S., Zhao L., Wang W., Zhao Y., Zhang G., Ma X., Gong J., Nanoscale, 2013, 5(12), 5582—5588 |
26 | Xu J., Shang J. K., Wang Y., Chen Y., Li Y. X., Catal. Lett., 2016, 147(2), 328—334 |
27 | Wang Z., Shen G., Li J., Liu H., Wang Q., Chen Y., Appl. Catal. B: Environ., 2013, 138/139, 253—259 |
28 | Wang W., Howe J. Y., Li Y., Qiu X., Joy D. C., Paranthaman M. P., Doktycz M. J., Gu B., J. Mater. Chem., 2010, 20(36), 7776—7781 |
29 | Guo X., Qiu Z., Mao J., Zhou R., PhysChemChemPhys, 2018, 20(40), 25983—25994 |
30 | Liyanage A. D., Perera S. D., Tan K., Chabal Y., Balkus K. J., ACS Catal., 2014, 4(2), 577—584 |
31 | Zhu S., Lian X., Fan T., Chen Z., Dong Y., Weng W., Yi X., Fang W., Nanoscale, 2018, 10(29), 14031—14038 |
32 | Yang S., Zhang M., Wu X., Wu X., Zeng F., Li Y., Duan S., Fan D., Yang Y., Wu X., J. Electroanal. Chem., 2019, 832, 69—74 |
33 | Henzie J., Etacheri V., Jahan M., Rong H., Hong C. N., Pol V. G., J. Mater. Chem. A, 2017, 5(13), 6079—6089 |
34 | Trovarelli A., Llorca J., ACS Catal., 2017, 7(7), 4716—4735 |
35 | Zhang X., Li H., Hou F., Yang Y., Dong H., Liu N., Wang Y., Cui L., Appl. Surf. Sci., 2017, 411, 27—33 |
36 | Cheng L., Men Y., Wang J., Wang H., An W., Wang Y., Duan Z., Liu J., Appl. Catal. B: Environ., 2017, 204, 374—384 |
37 | Zhang Y., Yang F., Gao R., Dai W. L., Appl. Surf. Sci., 2019, 471, 767—775 |
38 | Wang X., Jiang Z., Zheng B., Xie Z., Zheng L., Crystengcomm, 2012, 14(22), 7579—7582 |
39 | Światowska J., Lair V., Pereira⁃Nabais C., Cote G., Marcus P., Chagnes A., Appl. Surf. Sci., 2011, 257(21), 9110—9119 |
40 | Nagai Y., Yamamoto T., Tanaka T., Yoshida S., Nonaka T., Okamoto T., Suda A., Sugiura M., Catal. Today, 2002, 74(3), 225—234 |
41 | Jia L., Shen M., Wang J., Gu W., J. Alloy. Compd., 2009, 473(1/2), 293—297 |
42 | Zhu L., Li X., Liu Z., Yao L., Yu P., Wei P., Xu Y., Jiang X., Nanomaterials(Basel), 2019, 9(5), 675 |
43 | Lei T., Guo H., Miao C., Hua W., Yue Y., Gao Z., Catalysts, 2019, 9(2), 119 |
44 | Jiang Y., Gao J., Zhang Q., Liu Z., Fu M., Wu J., Hu Y., Ye D., Chem. Eng. J., 2019, 371, 78—87 |
45 | Hu W., He F., Chen X., Liu S., J. Nanopart. Res., 2018, 21(1), 6 |
46 | Zhang R., Guo L., Chen C., Chen J., Chen A., Zhao X., Liu X., Xiu Y., Hou Z., Catal. Sci. Technol., 2015, 5(5), 2959—2972 |
47 | Wu X., Liang Q., Weng D., Fan J., Ran R., Catal. Today, 2007, 126(3/4), 430—435 |
48 | Fu Z., Zhong Y., Yu Y., Long L., Xiao M., Han D., Wang S., Meng Y., ACS Omega, 2018, 3(1), 198—207 |
49 | Zhao S. Y., Wang S. P., Zhao Y. J., Ma X. B., Chin. Chem. Lett., 2017, 28(1), 65—69 |
50 | Zhang M., Xiao M., Wang S., Han D., Lu Y., Meng Y., J. Clean Prod., 2015, 103, 847—853 |
51 | Fu Y., Zhu H., Shen J., Thermochim. Acta, 2005, 434(1/2), 88—92 |
1 | Tan H., Wang Z., Xu Z., Sun J., Xu Y., Chen Q., Chen Y., Guo G., Catal. Today, 2018, 316, 2—12 |
2 | Tamboli A. H., Chaugule A. A., Kim H., Chem. Eng. J., 2017, 323, 530—544 |
3 | Zhang M., Alferov K., Xiao M., Han D., Wang S., Meng Y., Catalysts, 2018, 8(4), 142 |
4 | Du J., Shi J., Li Z., Liu Z., Fan X., Tao C., J. Nat. Gas Chem., 2012, 21(4), 476—479 |
5 | Kohno K., Choi J. C., Ohshima Y., Yili A., Yasuda H., Sakakura T., J. Organomet. Chem., 2008, 693(7), 1389—1392 |
6 | Kumar S., Jain S. L., Ind. Eng. Chem. Res., 2014, 53(41), 15798—15801 |
7 | Kumar S., Kumar P., Jain S. L., J.Mater. Chem. A, 2014, 2(44), 18861—18866 |
8 | Kumar P., With P., Srivastava V. C., Gläser R., Mishra I. M., J. Alloy. Compd., 2017, 696, 718—726 |
9 | Wu Z., Mann A. K. P., Li M., Overbury S. H., J. Phys. Chem. C, 2015, 119(13), 7340—7350 |
10 | Hu Z., Metiu H., J. Phys. Chem. C, 2012, 116(11), 6664—6671 |
11 | Tamboli A. H., Chaugule A. A., Gosavi S. W., Kim H., Fuel, 2018, 216, 245—254 |
12 | Liu B., Li C., Zhang G., Yao X., Chuang S. S. C., Li Z., ACS Catal., 2018, 8(11), 10446—10456 |
13 | Lu X., Wang W., Wei S., Guo C., Shao Y., Zhang M., Deng Z., Zhu H., Guo W., ACS Catal., 2015, 5(118), 97528—97535 |
14 | Liu B., Li C., Zhang G., Yan L., Li Z., New J. Chem., 2017, 41(20), 12231—12240 |
15 | Aresta M., Dibenedetto A., Pastore C., Angelini A., Aresta B., Pápai I., J. Catal., 2010, 269(1), 44—52 |
16 | Kang K. H., Joe W., Lee C. H., Kim M., Kim D. B., Jang B., Song I. K., J. Nanosci. Nanotechnol., 2013, 13(12), 8116—8120 |
17 | Chen Y., Wang H., Qin Z., Tian S., Li G., Green Chem., 2019, 21(17), 4642—4649 |
18 | Kumar P., With P., Srivastava V. C., Shukla K., Gläser R., Mishra I. M., RSC Adv., 2016, 6(111), 110235—110246 |
19 | Deng C., Huang Q., Zhu X., Hu Q., Su W., Qian J., Dong L., Li B., Fan M., Liang C., Appl. Surf. Sci., 2016, 389, 1033—1049 |
52 | Kumari N., Haider M. A., Agarwal M., Sinha N., Basu S., J. Phys. Chem. C, 2016, 120(30), 16626—16635 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[5] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[6] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[7] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[8] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[9] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[10] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[11] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[12] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[13] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[14] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[15] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||