Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (5): 1091.doi: 10.7503/cjcu20190630
• Physical Chemistry • Previous Articles Next Articles
LIU Hengshuo,YU Zhiquan,SUN Zhichao,WANG Yao,LIU Yingya(),WANG Anjie
Received:
2019-12-04
Online:
2020-05-10
Published:
2020-03-06
Contact:
Yingya LIU
E-mail:liu@dlut.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Hengshuo,YU Zhiquan,SUN Zhichao,WANG Yao,LIU Yingya,WANG Anjie. Copper Salt Anchored on a Covalent Organic Framework as Heterogeneous Catalyst for Chan-Lam Coupling Reaction [J]. Chem. J. Chinese Universities, 2020, 41(5): 1091.
Entry | Cu source | Modification solvent |
---|---|---|
1 | CuI | Acetonitrile |
2 | Cu(NO3)2·3H2O | Ethanol |
3 | CuCl2 | Ethanol |
4 | Cu2Cl2 | DMSO |
5 | Cu(OAc)2·H2O | Ethanol |
6 | CuSO4·5H2O | DMF |
7 | Cu(CF3SO3)2 | Acetonitrile |
Entry | Cu source | Modification solvent |
---|---|---|
1 | CuI | Acetonitrile |
2 | Cu(NO3)2·3H2O | Ethanol |
3 | CuCl2 | Ethanol |
4 | Cu2Cl2 | DMSO |
5 | Cu(OAc)2·H2O | Ethanol |
6 | CuSO4·5H2O | DMF |
7 | Cu(CF3SO3)2 | Acetonitrile |
Entry | Solvent | Catalyst | Base | GC yield(%) | Isolated yield(%) |
---|---|---|---|---|---|
1b | EtOH | — | TEA | — | — |
2c | EtOH | TpBpy | TEA | — | — |
3d | EtOH | CuI@TpBpy | TEA | — | — |
4 | EtOH | CuI@TpBpy | TEA | 22 | |
5 | MeOH | CuI@TpBpy | TEA | 39 | 38 |
6 | MeOH | CuCl2@TpBpy | TEA | 23 | 21 |
7 | MeOH | Cu(NO3)2@TpBpy | TEA | 19 | |
8 | MeOH | Cu(CF3SO3)2@TpBpy | TEA | 61 | |
9 | MeOH | Cu2Cl2@TpBpy | TEA | 32 | |
10 | MeOH | CuSO4@TpBpy | TEA | 51 | |
11 | MeOH | Cu(OAc)2@TpBpy | TEA | 66 | |
12 | DMSO | Cu(OAc)2@TpBpy | TEA | 6 | |
13 | DMF | Cu(OAc)2@TpBpy | TEA | Trace | |
14 | 1,4-Dioxane | Cu(OAc)2@TpBpy | TEA | Trace | |
15 | DCM | Cu(OAc)2@TpBpy | TEA | — | |
16 | 1,2-Dichloroethane | Cu(OAc)2@TpBpy | TEA | — | |
17 | Toluene | Cu(OAc)2@TpBpy | TEA | Trace | |
18e | MeOH | Cu(OAc)2@TpBpy | — | 44 | |
19 | MeOH | Cu(OAc)2@TpBpy | Na2CO3 | 37 | |
20 | MeOH | Cu(OAc)2@TpBpy | K2CO3 | 18 | |
21 | MeOH | Cu(OAc)2@TpBpy | pyridine | 45 |
Entry | Solvent | Catalyst | Base | GC yield(%) | Isolated yield(%) |
---|---|---|---|---|---|
1b | EtOH | — | TEA | — | — |
2c | EtOH | TpBpy | TEA | — | — |
3d | EtOH | CuI@TpBpy | TEA | — | — |
4 | EtOH | CuI@TpBpy | TEA | 22 | |
5 | MeOH | CuI@TpBpy | TEA | 39 | 38 |
6 | MeOH | CuCl2@TpBpy | TEA | 23 | 21 |
7 | MeOH | Cu(NO3)2@TpBpy | TEA | 19 | |
8 | MeOH | Cu(CF3SO3)2@TpBpy | TEA | 61 | |
9 | MeOH | Cu2Cl2@TpBpy | TEA | 32 | |
10 | MeOH | CuSO4@TpBpy | TEA | 51 | |
11 | MeOH | Cu(OAc)2@TpBpy | TEA | 66 | |
12 | DMSO | Cu(OAc)2@TpBpy | TEA | 6 | |
13 | DMF | Cu(OAc)2@TpBpy | TEA | Trace | |
14 | 1,4-Dioxane | Cu(OAc)2@TpBpy | TEA | Trace | |
15 | DCM | Cu(OAc)2@TpBpy | TEA | — | |
16 | 1,2-Dichloroethane | Cu(OAc)2@TpBpy | TEA | — | |
17 | Toluene | Cu(OAc)2@TpBpy | TEA | Trace | |
18e | MeOH | Cu(OAc)2@TpBpy | — | 44 | |
19 | MeOH | Cu(OAc)2@TpBpy | Na2CO3 | 37 | |
20 | MeOH | Cu(OAc)2@TpBpy | K2CO3 | 18 | |
21 | MeOH | Cu(OAc)2@TpBpy | pyridine | 45 |
Entry | Solvent | Catalyst | Yieldb(%) |
---|---|---|---|
1 | MeOH | CuI | 62 |
2 | MeOH | Cu(NO3)2·3H2O | 71 |
3 | MeOH | CuCl2 | 68 |
4 | MeOH | Cu2Cl2 | 68 |
5 | MeOH | Cu(OAc)2·H2O | 81 |
Entry | Solvent | Catalyst | Yieldb(%) |
---|---|---|---|
1 | MeOH | CuI | 62 |
2 | MeOH | Cu(NO3)2·3H2O | 71 |
3 | MeOH | CuCl2 | 68 |
4 | MeOH | Cu2Cl2 | 68 |
5 | MeOH | Cu(OAc)2·H2O | 81 |
Entry | Boronic acid | Amine | Product | Yield b(%) |
---|---|---|---|---|
1 | 44 | |||
2 | 62 | |||
3 | 54 | |||
4 | 53 | |||
5 | Trace | |||
6 | Trace | |||
7 | 59 | |||
8 | 41 |
Entry | Boronic acid | Amine | Product | Yield b(%) |
---|---|---|---|---|
1 | 44 | |||
2 | 62 | |||
3 | 54 | |||
4 | 53 | |||
5 | Trace | |||
6 | Trace | |||
7 | 59 | |||
8 | 41 |
[1] |
Pitzer J., Steiner K ., J. Biotechnol., 2016,235, 32—46
doi: 10.1016/j.jbiotec.2016.03.023 URL pmid: 26995609 |
[2] |
Xu M., Zheng Z., Wang M., Kong L., Ao Y., Li Y., Org. Biomol. Chem, 2018,16(45), 8761—8768
doi: 10.1039/c8ob02419g URL pmid: 30402643 |
[3] |
Jin X., Liu M. Y., Zhang D. F., Zhong X., Du K., Qian P., Gao H., Wei M. J., Pharmacol. Res., 2019,145, 104253—104253
doi: 10.1016/j.phrs.2019.104253 URL pmid: 31059788 |
[4] | Kidwai M., Bansal V., Kumarb A., Mozumdarb S., Green Chem., 2007,9, 742—745 |
[5] |
Rosen B. M., Quasdorf K. W., Wilson D. A., Zhang N., Resmerita A. M., Garg N. K., Percec V., Chem. Rev., 2011,111(3), 1346—1416
doi: 10.1021/cr100259t URL pmid: 21133429 |
[6] | Shang R., Liu L., China Chem., 2011,54(11), 1670—1687 |
[7] | Chan D. M. T., Monaco K. L., Wang R. P., Winters M. P., Tetrahedron Lett., 1998,39, 2933—2936 |
[8] | Lam P. Y. S., Clarkt C. G., Saubernt S., Adamst J., Winters M. P., Chan D. M. T., Combst A., Tetrahedron Lett., 1998,39, 2941—2944 |
[9] |
Munir I., Zahoor A. F., Rasool N., Naqvi S. A. R., Zia K. M., Ahmad R., Mol. Divers., 2019,23(1), 215—259
doi: 10.1007/s11030-018-9870-z URL pmid: 30159807 |
[10] | Gajare S., Jagadale M., Naikwade A., Bansode P., Rashinkar G., Appl. Organomet. Chem, 2019,33(6), e4915 |
[11] |
Kantam M. L., Roy M., Roy S., Sreedhar B., De R. L., Catal. Commun., 2008,9(13), 2226—2230
doi: 10.1158/1535-7163.MCT-13-1109 URL pmid: 24980946 |
[12] | Islam S. M., Salam N., Mondal P., Roy A. S., Ghosh K., Tuhina K., J. Mol. Catal. A: Chem., 2014,387, 7—19 |
[13] | Bukowska A., Bukowski W., Bester K., Hus K., Appl. Organomet. Chem, 2017,31(12), e3847 |
[14] |
Dhakshinamoorthy A., Garcia H., Chem. Soc. Rev, 2014,43(16), 5750—5765
doi: 10.1039/c3cs60442j URL pmid: 24614959 |
[15] |
Dhakshinamoorthy A., Asiri A. M., Garcia H., Chem. Soc. Rev., 2015,44(7), 1922—1947
doi: 10.1039/c4cs00254g URL pmid: 25608717 |
[16] |
Arai T., Kawasaki N., Kanoh H ., Synlett., 2012,23(10), 1549—1553
doi: 10.1002/1097-4598(200010)23:10<1549::aid-mus11>3.0.co;2-0 URL pmid: 11003790 |
[17] | Priyadarshini S., Amal Joseph P. J., Kantam M. L., Sreedhar B., Tetrahedron, 2013,69(31), 6409—6414 |
[18] |
Ding S. Y., Wang W., Chem. Soc. Rev., 2013,42(2), 548—568
doi: 10.1039/c2cs35072f URL pmid: 23060270 |
[19] | Wu M. X., Yang Y. W., Chinese Chem. Lett., 2017,28(6), 1135—1143 |
[20] | Hu H., Yan Q., Ge R., Gao Y., Chinese J . Catal., 2018,39(7), 1167—1179 |
[21] | Shinde D. B., Aiyappa H. B., Bhadra M., Biswal B. P., Wadge P., Kandambeth S., Garai B., Kundu T., Kurungot S., Banerjee R., J. Mater. Chem. A, 2016,4(7), 2682—2690 |
[22] |
Ding S. Y., Gao J., Wang Q., Zhang Y., Song W. G., Su C. Y., Wang W., J. Am. Chem. Soc., 2011,133(49), 19816—19822
doi: 10.1021/ja206846p URL pmid: 22026454 |
[23] |
Xu H., Gao J., Jiang D., Nat. Chem, 2015,7(11), 905—912
doi: 10.1038/nchem.2352 URL pmid: 26492011 |
[24] | Han Y., Zhang M., Zhang Y. Q., Zhang Z. H., Green Chem., 2018,20(21), 4891—4900 |
[25] | Puthiaraj P., Pitchumani K., Green Chem., 2014,16(9), 4223—4233 |
[26] | Norini T., Guangbo W., Iuliia O., Nathalie D., Karen L., Rino M ., J. Catal., 2019,375, 242—248 |
[27] | Nainmalai D., Palaniswamy S ., ChemCatChem, 2016,8, 1—9 |
[28] |
Wu C. D., Li L., Shi L. X., Dalton Trans., 2009, (34), 6790—6794
doi: 10.1039/b823335g URL pmid: 19690690 |
[29] |
Guan C., Feng Y., Zou G., Tang J ., Tetrahedron, 2017,73(49), 6906—6913
doi: 10.1016/j.tet.2017.10.043 URL |
[30] |
Jia X., Peng P., Org. Biomol. Chem, 2018,16(46), 8984—8988
doi: 10.1039/c8ob02254b URL pmid: 30418460 |
[31] | Li Z. H., Xue L. P., Wang L., Zhang S. T., Zhao B. T., Inorg. Chem. Commun., 2013,27, 119—121 |
[32] | Islam S. M., Dey R. C., Roy A. S., Paul S., Mondal S., Transition Met. Chem., 2014,39(8), 961—969 |
[33] |
Sharghi H., Sepehri S., Aberi M., Mol. Divers, 2017,21(4), 855—864
doi: 10.1007/s11030-017-9759-2 URL pmid: 28653129 |
[34] |
James P. C., Min Z., Chi Z., Costanzo S., J. Org. Chem., 2001,66(23), 7892—7897
doi: 10.1021/jo010615u URL pmid: 11701055 |
[35] |
Collman J. P., Zhong M., Organic Letters, 2000,2(9), 1233—1236
doi: 10.1021/ol000033j URL pmid: 10810715 |
[36] |
King A. E., Brunold T. C., Stahl S. S., J. Am. Chem. Soc., 2009,131, 5044—5045
doi: 10.1021/ja9006657 URL pmid: 19309072 |
[37] |
Vantourout J. C., Miras H. N., Isidro-Llobet A., Sproules S., Watson A. J., J. Am. Chem. Soc., 2017,139(13), 4769—4779
doi: 10.1021/jacs.6b12800 URL pmid: 28266843 |
[38] | Khosravi A., Mokhtari J., Naimi-Jamal M. R., Tahmasebi S., Panahi L., RSC Adv., 2017,7(73), 46022—46027 |
[1] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[2] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[3] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[4] | WANG Kaixuan, LI Ziping, CHEN Xianyang, CUI Yong. Synthesis, Structure and Characterization of a Dihydrophenazine Based 3D Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220210. |
[5] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[6] | LI Haibo, XIAO Changfa, JIANG Long, HUANG Yun, DAN Yi. Copolymerization of Methyl Acrylate and 1-Octene Catalyzed by the Loaded Aluminum Chloride on MCM-41 Molecular Sieve [J]. Chem. J. Chinese Universities, 2021, 42(9): 2974. |
[7] | YAN Yanhong, WU Simin, YAN Yilun, TANG Xihao, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang, GU Fenglong. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(3): 956. |
[8] | YAN Yanhong, LI Shuqing, TANG Xihao, ZHENG Shengrun, CAI Songliang, ZHANG Weiguang, GU Fenglong. Cationic Covalent Organic Frameworks for the Enhanced Removal of Non-steroidal Anti-inflammatory Drugs from Water [J]. Chem. J. Chinese Universities, 2021, 42(10): 3091. |
[9] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chem. J. Chinese Universities, 2020, 41(9): 1917. |
[10] | YAN Yilun, HUANG Xiaoling, FAN Jun, CAI Songliang, ZHENG Shengrun, ZHANG Weiguang. Synthesis of a β-Ketoenamine-linked Chiral Covalent Organic Framework and Its Application in Capillary Gas Chromatography [J]. Chem. J. Chinese Universities, 2020, 41(9): 1996. |
[11] | WANG Yang, WANG Sidi, TANG Shaokun. Synthesis and Characterization of Imine-based Covalent Organic Framework(COF-LZU1) in Supercritical Carbon Dioxide [J]. Chem. J. Chinese Universities, 2020, 41(8): 1792. |
[12] | CHANG Jianhong, XU Guojie, LI Hui, FANG Qianrong. Quinone-based Covalent Organic Frameworks for Efficient Oxygen Evolution Reaction† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1609. |
[13] | LI Shanshan, ZHAO Wenjuan, LI Hui, FANG Qianrong. A Photoresponsive Azobenzene-functionalized Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2020, 41(6): 1384. |
[14] | ZHANG Danwei, WANG Hui, LI Zhanting. Water-soluble Regular Three-dimensional Supramolecular and Covalent Organic Polymers [J]. Chem. J. Chinese Universities, 2020, 41(6): 1139. |
[15] | XU Guojie, CHANG Jianhong, FANG Qianrong. 2D Mesoporous Covalent Organic Framework with High Iodine Capture Capability [J]. Chem. J. Chinese Universities, 2020, 41(12): 2667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||