Chemical Journal of Chinese Universities ›› 2019, Vol. 40 ›› Issue (7): 1501-1509.doi: 10.7503/cjcu20180823
• Physical Chemistry • Previous Articles Next Articles
JI Lei*(), GUO Fanzuo, WANG Kehan, WANG Lei
Received:
2018-12-10
Online:
2019-06-28
Published:
2019-07-09
Contact:
JI Lei
E-mail:jileiwipm@163.com
Supported by:
CLC Number:
JI Lei,GUO Fanzuo,WANG Kehan,WANG Lei. Surfactant-assisted Formation of Nanoporous Pt Particles as Co-catalyst Loaded on P25 and Enhanced Photocatalytic Performance†[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1501-1509.
Sample | w(Pt)(%) | w(Ni)(%) | m(P25)/g |
---|---|---|---|
R-P25 | 0 | 0 | 0.2000 |
Pt/P25 | 3.0 | 0 | 0.1940 |
PtNi2/P25 | 3.0 | 1.8 | 0.1904 |
PtNi3/P25 | 3.0 | 2.7 | 0.1886 |
PtNi4/P25 | 3.0 | 3.6 | 0.1868 |
Table 1 Mass fraction of Pt and Ni and dosage of P25 required
Sample | w(Pt)(%) | w(Ni)(%) | m(P25)/g |
---|---|---|---|
R-P25 | 0 | 0 | 0.2000 |
Pt/P25 | 3.0 | 0 | 0.1940 |
PtNi2/P25 | 3.0 | 1.8 | 0.1904 |
PtNi3/P25 | 3.0 | 2.7 | 0.1886 |
PtNi4/P25 | 3.0 | 3.6 | 0.1868 |
Element | Mass fraction(%) | Atomic fraction(%) | ||||
---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 0 min | 15 min | 30 min | |
C | 7.95 | 8.04 | 4.13 | 16.11 | 15.85 | 8.14 |
O | 38.01 | 40.43 | 46.25 | 57.83 | 59.71 | 68.52 |
Ti | 48.91 | 47.76 | 46.37 | 24.85 | 23.81 | 22.94 |
Ni | 1.96 | 0.54 | — | 0.81 | 0.21 | — |
Pt | 3.17 | 3.23 | 3.25 | 0.40 | 0.42 | 0.40 |
Table 2 Elemental composition of sample de-PtNi2(PT30)P25 with different dealloying time
Element | Mass fraction(%) | Atomic fraction(%) | ||||
---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 0 min | 15 min | 30 min | |
C | 7.95 | 8.04 | 4.13 | 16.11 | 15.85 | 8.14 |
O | 38.01 | 40.43 | 46.25 | 57.83 | 59.71 | 68.52 |
Ti | 48.91 | 47.76 | 46.37 | 24.85 | 23.81 | 22.94 |
Ni | 1.96 | 0.54 | — | 0.81 | 0.21 | — |
Pt | 3.17 | 3.23 | 3.25 | 0.40 | 0.42 | 0.40 |
Sample | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Aperture/nm |
---|---|---|---|
P25 | 49.0 | 0.20 | 16.2 |
Pt/P25 | 49.3 | 0.23 | 20.6 |
PtNi2/P25 | 48.3 | 0.29 | 21.8 |
de-PtNi2/P25 | 50.3 | 0.29 | 23.0 |
PtNi2(PT30)/P25 | 48.6 | 0.38 | 31.4 |
de-PtNi2(PT30)/P25 | 50.4 | 0.38 | 31.3 |
Table 3 Specific surface area, pore volume and average pore diameter of different samples
Sample | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Aperture/nm |
---|---|---|---|
P25 | 49.0 | 0.20 | 16.2 |
Pt/P25 | 49.3 | 0.23 | 20.6 |
PtNi2/P25 | 48.3 | 0.29 | 21.8 |
de-PtNi2/P25 | 50.3 | 0.29 | 23.0 |
PtNi2(PT30)/P25 | 48.6 | 0.38 | 31.4 |
de-PtNi2(PT30)/P25 | 50.4 | 0.38 | 31.3 |
Fig.7 Photocatalytic degradation of MB in the presence of different catalysts under UV light irradiation(A) a. P25; b. R-P25; c. Pt/P25; d. de-PtNi/P25; e. de-PtNi2/P25; f. de-PtNi3/P25; g. de-PtNi4/P25. (C) a. P25; b. Pt/P25; c. PtNi2(PT30)/P25; d. de-PtNi2(PT0)/P25; e. de-PtNi2(PT15)/P25; f. de-PtNi2(PT20)/P25; g. de-PtNi2(PT30)/P25; h. de-PtNi2(PT35)/P35. (D) a. P25; b. Pt/P25; c. de-PtNi2(P0T)/P25; d. de-PtNi2(P0.17T)/P25; e. de-PtNi2(P0.033T)/P25; f. de-PtNi2(P0.050T)/P25; g. de-PtNi2(P0.067T)/P25.
[1] | Ofiarska A., Pieczyńska A., Fiszka B.A., Stepnowski P., Siedlecka E. M., Chemical Engineering Journal, 2016, 285, 417—427 |
[2] | Guerrero-Araque D., Acevedo-Peña P., Ramírez-Ortega D., Lartundo-Rojas L., Gómez R., Journal of Chemical Technology & Biotechno-logy, 2017, 92(7), 1531—1539 |
[3] | Lu D., Chai W., Yang M., Fang P., Wu W., Zhao B., Xiong R., Wang H., Applied Catalysis B: Environmental, 2016, 190, 44—65 |
[4] | Park H., Kim Y. K., W. C., Journal of Physical Chemistry C, 2011, 115(13), 6141—6148 |
[5] | Deng J., Liu L., Niu T., Sun X., Applied Surface Science, 2017, 403, 531—539 |
[6] | Yurdakal S., Yanar Ş. Ö., Çetinkaya S., Alagöz O., Yalçın P., Özcan L., Applied Catalysis B: Environmental, 2017, 202, 500—508 |
[7] | Hsieh S.H., Chen W. J., Wu C. T., Applied Surface Science, 2015, 340, 9—17 |
[8] | Bernareggi M., Dozzi M., Bettini L., Ferretti A., Chiarello G., Selli E., Catalysts, 2017, 7(10), 301 |
[9] | Chen P., Wang L., Wang P., Kostka A., Wark M., Muhler M., Beranek R., Catalysts, 2015, 5(1), 270—285 |
[10] | Cha G., Altomare M., Truong N.N., Taccardi N., Lee K., Schmuki P., Chem. Asian J., 2017, 12(3), 314—323 |
[11] | Kmetyko A., Mogyorosi K., Gerse V., Konya Z., Pusztai P., Dombi A., Hernadi K., Materials(Basel), 2014, 7(10), 7022—7038 |
[12] | Lin W., Zheng H., Zhang P., Xu T., Applied Catalysis A: General, 2016, 521, 75—82 |
[13] | Lv J., Gao H., Wang H., Lu X., Xu G., Wang D., Chen Z., Zhang X., Zheng Z., Wu Y., Applied Surface Science, 2015, 351, 225—231 |
[14] | Lee D., Jang H.Y., Hong S., Park S., Journal of Colloid and Interface Science, 2012, 388(1), 74—79 |
[15] | Geboes B., Ustarroz J., Sentosun K.,Vanrompay H., Hubin A., Bals S., Breugelmans T., ACS Catalysis, 2016, 6(9), 5856—5864 |
[16] | Oezaslan M., Hasché F., Strasser P., Journal of Physical Chemistry Letters, 2013, 4(19), 3273—3291 |
[17] | Shui J.L., Zhang J. W., Li J. C. M., Journal of Materials Chemistry, 2011, 21(17), 6225—6229 |
[18] | Zhang L., Li Y., Zhang Q., Wang H., Applied Surface Science, 2014, 319, 21—28 |
[19] | Sun Z., Wang Y., Niu M., Yi H., Jiang J., Jin Z., Catalysis Communications, 2012, 27, 78—82 |
[20] | Ge J., Jiang J., Yuan C., Zhang C., Liu M., Tetrahedron Letters, 2017, 58(12), 1142—1145 |
[21] | Uberman P. M., Pérez L. A., Lacconi G. I., Martín S. E., Journal of Molecular Catalysis A: Chemical,2012, 363/364, 245—253 |
[22] | Li X., Chen Q., Mccue I., Snyder J., Crozier P., Erlebacher J., Sieradzki K., Nano Letters, 2014, 14(5), 2569—2577 |
[23] | Kong Q., Feng W., Zhu X., Sun C., Ma J., Wang X., Journal of Materials Science, 2017, 52(20), 12445—12454 |
[24] | Nguyen N.T., Altomare M., Yoo J., Schmuki P., Advanced Materials, 2015, 27(20), 3208—3215 |
[25] | Zhou Q., Qi L., Yang H., Xu C., Journal of Colloid and Interface Science, 2018, 513, 258—265 |
[26] | Zhang Q., Wang X., Qi Z., Wang Y., Zhang Z., Electrochimica Acta, 2009, 54(26), 6190—6198 |
[27] | Song T.T., Gao Y. L., Zhang Z. H., Zhai Q. J., Corrosion Science, 2013, 68, 256—262 |
[28] | Zhang C., Ji H., Sun J., Kou T., Zhang Z., Materials Letters, 2013, 92, 369—371 |
[29] | Nguyen N.T., Ozkan S., Tomanec O., Zhou X., Zboril R., Schmuki P., Journal of Materials Chemistry A, 2018, 6(28), 13599—13606 |
[30] | Zhang N., Liu S., Fu X., Xu Y. J., Journal of Physical Chemistry C, 2011, 115(18), 9136—9145 |
[31] | Liu E., Kang L., Yang Y., Sun T., Hu X., Zhu C., Liu H., Wang Q., Li X., Fan J., Nanotechnology, 2014, 25(16), 165401 |
[32] | Wang Q., An N., Bai Y., Hang H., Li J., Lu X., Liu Y., Wang F., Li Z., Lei Z., Int. J. Hydrogen Energy, 2013, 38(25), 10739—10745 |
[33] | Patnaik S., Swain G., Parida K. M., Nanoscale, 2018, 10(13), 5950—5964 |
[34] | Ran J., Zhang J., Yu J., Jaroniec M., Qiao S. Z., Chemical Society Reviews, 2014, 43(22), 7787—7812 |
[35] | Jourshabani M., Shariatinia Z., Badiei A., Journal Colloid and Interface Science, 2017, 507, 59—73 |
[36] | Guo Y., Li J., Gao Z., Zhu X., Liu Y., Wei Z., Zhao W., Sun C., Applied Catalysis B: Environmental, 2016, 192, 57—71 |
[37] | Yang J., Wang D., Han H., Al. E., Accounts of Chemical Research, 2013, 46, 1900—1909 |
[38] | Kennedy J., Jones W., Morgan D. J. Bowker M., Lu L., Kiely C. J., Wells P. P., Dimitratos N., Catalysis, Structure & Reactivity, 2014, 1(1), 35—43 |
[39] | Pol R., Guerrero M., García-Lecina E., Altube A., Rossinyol E., Garroni S., Baró M.D., Pons J., Sort J., Pellicer E., Applied Catalysis B: Environmental, 2016, 181, 270—278 |
[40] | Bai Y., Li W., Liu C., Yang Z., Feng X., Lu X., Chan K. Y., Journal of Materials Chemistry, 2009, 19(38), 7055—7061 |
[41] | Zhang C., Zhou Y., Bao J., Zhang Y., Zhao S., Fang J., Chen W., Sheng X., Applied Organometallic Chemistry, 2018, 32(3), e4204 |
[1] | PENG Shaoqin, LI Ziqin, HUANG Mingtao, LI Yuexiang. Preparation of Zn2In2S5 Photocatalyst by Post-treatment with Hydrochloric Acid for Effective Photocatalytic Hydrogen Evolution† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1677-1683. |
[2] | YU Renpeng, HAN Mei, ZHANG Mengyao, LIU Jianfang, LI Moxia, HU Jiawen. Fractal, Plasmonic Black Gold for Hot Electron Catalysis† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1638-1644. |
[3] | ZHU Yuxin, OUYANG Jie, SONG Yanhua, TANG Sheng, CUI Yanjuan. Preparation of Boron and Iodine co-Doped Carbon Nitride and Its Performance in Photocatalytic Hydrogen Evolution from Water† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1645-1652. |
[4] | CHENG Rongmin,XU Hong,SHAN Ruiping,ZHAN Conghong. Influential Factors of La-doped Calcium Titanate for Photocatalytic H2 Evolution Under Visible Light [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1345-1351. |
[5] | WANG Rui,XU Mei,XIE Jiawen,YE Shengying,SONG Xianliang. Effects of Hydrothermal Reaction Conditions on the Structure and Properties of Porous Spherical Bi2WO6 Photocatalyst [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1320-1328. |
[6] | ZHANG Xuan,ZHANG Tianci,JIANG Ping,GE Jijiang,ZHANG Guicai. Enhancement of CO2 Foam Stability with Modified Silica Nanoparticles in High Salinity Brine [J]. Chemical Journal of Chinese Universities, 2020, 41(5): 1076-1082. |
[7] | ZHAO Peng,ZHANG Jinteng,LIN Yanhong. Excellent Ultraviolet Photocatalytic Efficiency of Mg 2+ Doped ZnO and Analysis on Its Synergetic Effect [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 538-547. |
[8] | LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia. Transition Metal Coordination Polymers Constructed by 4-(4-Carboxyphenoxy)isophthalic Acid: Synthesis, Crystal Structure, Fluorescence Sensing and Photocatalysis † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 253-261. |
[9] | ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng,WANG Hui,WANG Fei,LI Ping. Effect of Oxygen on Photocatalytic Nitrogen Fixation Performance of N Vacancy-embedded Graphitic Carbon Nitride † [J]. Chemical Journal of Chinese Universities, 2020, 41(1): 132-139. |
[10] | ZHOU Qi, LI Zhiyang, WANG Fan. Effect of Mo on the Skeleton Structure and Hydrogen Evolution Performance of Ni-Mo Alloys Electrode Prepared by De-alloying [J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1717-1725. |
[11] | ZHANG Kejie,LI Yu,XIA Yuan,HAN Shuo,CAO Jing,WANG Hanyang,LUO Wentao,ZHOU Zhiping. Synthesis and Photocatalytic Performance of CdS/CuS Core-shell Nanocomposites† [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 489-498. |
[12] | ZHANG Xinmu,CUI Xiangxu,YAOMA Kangyue,LI Tingting,ZHANG Zhiming. Electrospinning Preparation and Photocatalytic Activity of H4SiW12O40/Ethylene Vinyl Alcohol Copolymer Nanofibrous Membrane† [J]. Chemical Journal of Chinese Universities, 2019, 40(2): 372-378. |
[13] | Junjin WANG,Guoying ZHANG,Yaqiu SUN,Jingwang LIU. Construction of Ag2CO3/Bi2O2CO3 p-n Heterojunction and Its Photocatalytic Activity † [J]. Chemical Journal of Chinese Universities, 2019, 40(12): 2590-2597. |
[14] | LIU Meihong, TAO Ran, LI Bing, LI Xinghua, HAN Chaohan, LI Xiaowei, SHAO Changlu. Controllable Preparation and Photocatalytic Properties of Three-dimensional Porous Zinc-tungsten Oxide Heterojunctions † [J]. Chemical Journal of Chinese Universities, 2019, 40(11): 2367-2374. |
[15] | GUO Qian,TANG Guangbei,WANG Hao,SUN Qian,GAO Xiaoya. Tunable Synthesis of BiOBr for Efficient Photocatalytic Degradation of Carbamazepine in Wastewater [J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2164-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||