Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (3): 498.doi: 10.7503/cjcu20150670
• Organic Chemistry • Previous Articles Next Articles
WANG Tao1, HUA Mingqing1,*(), LIU Weihan1, HUANG Yan1, ZHANG Qi1,2,*(
)
Received:
2015-08-21
Online:
2016-03-10
Published:
2016-01-07
Contact:
HUA Mingqing,ZHANG Qi
E-mail:huamq840710@163.com;qzhang@ujs.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Tao, HUA Mingqing, LIU Weihan, HUANG Yan, ZHANG Qi. Microwave-assisted One-pot Conversion of Salicylaldehydeoximes to 2-(Difluoromethoxy)benzonitriles†[J]. Chem. J. Chinese Universities, 2016, 37(3): 498.
Compd. | Appearance | Yield(%)a | m. p./℃ | IR(KBr), | HRMS, m/zb |
---|---|---|---|---|---|
3a | Yellow liquid | 50 | 3081, 2235, 1601, 1493, 1452, 1386, 1249, 1129, 761 | 192.0231 | |
3b | Yellow solid | 46 | 45—47 | 3112, 2239, 1488, 1387, 1274, 1240, 1138, 1075, 885, 825 | 225.9842 |
3c | Yellow solid | 58 | 56—58 | 3107, 2234, 1489, 1391, 1282, 1246, 1137, 1068, 885, 816 | 269.9343 |
3d | Yellow liquid | 33 | 3043, 2931, 2236, 1595, 1502, 1386, 1256, 1221, 1132, 827 | 206.0388 | |
Compd. | Appearance | Yield(%)a | m. p./℃ | IR(KBr), | HRMS, m/zb |
3e | Yellow liquid | 22 | 3092, 2244, 1490, 1537, 1354, 1272, 1151, 1091, 842, 793 | 237.0091 | |
3f | Yellow solid | 18 | 52—55 | 3079, 2951, 2230, 1613, 1507, 1460, 1390, 1305, 1207, 1126, 816 | 222.0337 |
3g | Tawny liquid | 22 | 3109, 2979, 2217, 1613, 1525, 1407, 1356, 1269, 1199, 1125, 802 | 241.1147 | |
3h | Yellow solid | 31 | 50—52 | 3083, 2930, 2233, 1602, 1468, 1387, 1261, 1202, 1111, 790 | 206.0388 |
Table 1 Appearance, yields, melting points, IR and HRMS data of compounds 3a—3h
Compd. | Appearance | Yield(%)a | m. p./℃ | IR(KBr), | HRMS, m/zb |
---|---|---|---|---|---|
3a | Yellow liquid | 50 | 3081, 2235, 1601, 1493, 1452, 1386, 1249, 1129, 761 | 192.0231 | |
3b | Yellow solid | 46 | 45—47 | 3112, 2239, 1488, 1387, 1274, 1240, 1138, 1075, 885, 825 | 225.9842 |
3c | Yellow solid | 58 | 56—58 | 3107, 2234, 1489, 1391, 1282, 1246, 1137, 1068, 885, 816 | 269.9343 |
3d | Yellow liquid | 33 | 3043, 2931, 2236, 1595, 1502, 1386, 1256, 1221, 1132, 827 | 206.0388 | |
Compd. | Appearance | Yield(%)a | m. p./℃ | IR(KBr), | HRMS, m/zb |
3e | Yellow liquid | 22 | 3092, 2244, 1490, 1537, 1354, 1272, 1151, 1091, 842, 793 | 237.0091 | |
3f | Yellow solid | 18 | 52—55 | 3079, 2951, 2230, 1613, 1507, 1460, 1390, 1305, 1207, 1126, 816 | 222.0337 |
3g | Tawny liquid | 22 | 3109, 2979, 2217, 1613, 1525, 1407, 1356, 1269, 1199, 1125, 802 | 241.1147 | |
3h | Yellow solid | 31 | 50—52 | 3083, 2930, 2233, 1602, 1468, 1387, 1261, 1202, 1111, 790 | 206.0388 |
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ | 19F NMR(376 MHz), δ |
---|---|---|---|
3a | 7.92—7.95(m, 1H), 7.60—7.64(m, 1H), 7.34(t, J=7.6 Hz, 1H), 7.25(d, J=8.4 Hz, 1H), 6.67(t, J=72.8 Hz, 1H) | 151.9, 134.4, 134.0, 125.8, 119.7, 115.2(t,J=263.7 Hz, 1C), 115.0, 105.9 | -81.5 |
3b | 7.64(d,J=2.8 Hz, 1H), 7.56—7.59(m, 1H), 7.29(d, J=9.2 Hz, 1H), 6.64(t, J=71.2 Hz, 1H) | 150.2, 134.4, 133.3, 131.4, 121.7, 114.9(t,J=266.0 Hz, 1C), 113.7, 107.8 | -82.5 |
3c | 7.78(d, J=2.4 Hz, 1H), 7.70—7.73(m, 1H), 7.22(d, J=8.8 Hz, 1H), 6.45(t, J=71.6 Hz, 1H) | 150.7, 137.4, 136.2, 121.8, 118.4, 114.8(t,J=265.9 Hz, 1C), 113.6, 108.0 | -82.6 |
3d | 7.44(d,J=2.0 Hz, 1H), 7.38—7.40(m, 1H), 7.18(d, J=8.8 Hz, 1H), 6.60(t, J=72.4 Hz, 1H), 2.36(s, 3H) | 149.6, 136.1, 135.0, 134.0, 120.1, 115.2(t,J=263.8 Hz, 1C), 115.2, 105.9, 20.4 | -82.0 |
3e | 8.59(d,J=2.4 Hz, 1H), 8.50—8.53(m, 1H), 7.56(d, J=9.2 Hz, 1H), 6.83(t, J=70.4 Hz, 1H) | 156.0, 144.2, 129.7, 129.6, 119.4, 114.7(t,J=268.5 Hz, 1C), 112.9, 106.6 | -83.7 |
3f | 7.54(d, J=9.2 Hz, 1H), 6.69—6.80(m, 1H), 6.76—6.77(m, 1H), 6.62(t, J=72.0 Hz, 1H), 3.84(s, 3H) | 164.2, 153.4, 134.9, 115.4, 115.2(t, J=263.4 Hz, 1C), 111.2, 106.3, 97.4, 56.0 | -82.3 |
3g | 7.37(d, J=8.8 Hz, 1H), 6.58(t, J=72.8 Hz, 1H), 6.44—6.47(m, 1H), 6.38—6.39(m, 1H), 3.38(q, J=6.8 Hz, 4H), 1.18(t, J=7.2 Hz, 6H) | 153.8, 151.7, 134.5, 117.0, 115.5(t, J=261.8 Hz, 1C), 108.4, 102.3, 90.2, 44.8(s, 2C), 12.2(s, 2C) | -81.1 |
3h | 7.50—7.53(m, 2H), 7.28(t, J=7.2 Hz, 1H), 6.63(t, J=73.2 Hz, 1H), 2.37(s, 3H) | 149.8, 136.4, 134.2, 131.5, 126.9, 116.2(t, J=264.3 Hz, 1C), 115.6, 108.7, 16.5 | -80.3 |
Table 2 1H NMR, 13C NMR and 19F NMR data for compounds 3a—3h*
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ | 19F NMR(376 MHz), δ |
---|---|---|---|
3a | 7.92—7.95(m, 1H), 7.60—7.64(m, 1H), 7.34(t, J=7.6 Hz, 1H), 7.25(d, J=8.4 Hz, 1H), 6.67(t, J=72.8 Hz, 1H) | 151.9, 134.4, 134.0, 125.8, 119.7, 115.2(t,J=263.7 Hz, 1C), 115.0, 105.9 | -81.5 |
3b | 7.64(d,J=2.8 Hz, 1H), 7.56—7.59(m, 1H), 7.29(d, J=9.2 Hz, 1H), 6.64(t, J=71.2 Hz, 1H) | 150.2, 134.4, 133.3, 131.4, 121.7, 114.9(t,J=266.0 Hz, 1C), 113.7, 107.8 | -82.5 |
3c | 7.78(d, J=2.4 Hz, 1H), 7.70—7.73(m, 1H), 7.22(d, J=8.8 Hz, 1H), 6.45(t, J=71.6 Hz, 1H) | 150.7, 137.4, 136.2, 121.8, 118.4, 114.8(t,J=265.9 Hz, 1C), 113.6, 108.0 | -82.6 |
3d | 7.44(d,J=2.0 Hz, 1H), 7.38—7.40(m, 1H), 7.18(d, J=8.8 Hz, 1H), 6.60(t, J=72.4 Hz, 1H), 2.36(s, 3H) | 149.6, 136.1, 135.0, 134.0, 120.1, 115.2(t,J=263.8 Hz, 1C), 115.2, 105.9, 20.4 | -82.0 |
3e | 8.59(d,J=2.4 Hz, 1H), 8.50—8.53(m, 1H), 7.56(d, J=9.2 Hz, 1H), 6.83(t, J=70.4 Hz, 1H) | 156.0, 144.2, 129.7, 129.6, 119.4, 114.7(t,J=268.5 Hz, 1C), 112.9, 106.6 | -83.7 |
3f | 7.54(d, J=9.2 Hz, 1H), 6.69—6.80(m, 1H), 6.76—6.77(m, 1H), 6.62(t, J=72.0 Hz, 1H), 3.84(s, 3H) | 164.2, 153.4, 134.9, 115.4, 115.2(t, J=263.4 Hz, 1C), 111.2, 106.3, 97.4, 56.0 | -82.3 |
3g | 7.37(d, J=8.8 Hz, 1H), 6.58(t, J=72.8 Hz, 1H), 6.44—6.47(m, 1H), 6.38—6.39(m, 1H), 3.38(q, J=6.8 Hz, 4H), 1.18(t, J=7.2 Hz, 6H) | 153.8, 151.7, 134.5, 117.0, 115.5(t, J=261.8 Hz, 1C), 108.4, 102.3, 90.2, 44.8(s, 2C), 12.2(s, 2C) | -81.1 |
3h | 7.50—7.53(m, 2H), 7.28(t, J=7.2 Hz, 1H), 6.63(t, J=73.2 Hz, 1H), 2.37(s, 3H) | 149.8, 136.4, 134.2, 131.5, 126.9, 116.2(t, J=264.3 Hz, 1C), 115.6, 108.7, 16.5 | -80.3 |
Entry | P/W | Temperature/℃ | Time/min | Yield(%)b | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | 300 | 70 | 20 | 18 | <5 |
2 | 300 | 80 | 20 | 35 | <5 |
3 | 300 | 85 | 20 | 50 | <5 |
4 | 300 | 90 | 20 | 38 | <5 |
5 | 300 | 100 | 20 | 17 | 11 |
6 | 300 | 85 | 10 | 45 | <5 |
7 | 300 | 85 | 15 | 48 | <5 |
8 | 300 | 85 | 25 | 32 | <5 |
9 | 300 | 85 | 40 | 19 | <5 |
10 | 85 | 60 | |||
11 | 200 | 85 | 20 | ||
12 | 400 | 85 | 20 | 46 | <5 |
Table 3 Effects of heating power, temperature and time on the reactiona
Entry | P/W | Temperature/℃ | Time/min | Yield(%)b | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | 300 | 70 | 20 | 18 | <5 |
2 | 300 | 80 | 20 | 35 | <5 |
3 | 300 | 85 | 20 | 50 | <5 |
4 | 300 | 90 | 20 | 38 | <5 |
5 | 300 | 100 | 20 | 17 | 11 |
6 | 300 | 85 | 10 | 45 | <5 |
7 | 300 | 85 | 15 | 48 | <5 |
8 | 300 | 85 | 25 | 32 | <5 |
9 | 300 | 85 | 40 | 19 | <5 |
10 | 85 | 60 | |||
11 | 200 | 85 | 20 | ||
12 | 400 | 85 | 20 | 46 | <5 |
Entry | Difluoromethylating reagent, n/mmol | Base, n/mmol | Solvent, V/mL | Yield(%)b | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 2 | 50 | <5 |
2 | ClF2CCOONa, 3 | K2CO3, 3 | PhMe, 2 | ||
3 | ClF2CCOONa, 3 | K2CO3, 3 | MeCN, 2 | ||
4 | ClF2CCOONa, 3 | K2CO3, 3 | DMAc, 2 | 26 | <5 |
5 | ClF2CCOONa, 3 | K2CO3, 3 | NMP, 2 | 16 | <5 |
6 | ClF2CCOONa, 3 | K2CO3, 3 | EA, 2 | ||
7 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 5 | 13 | <5 |
8 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 1 | 13 | <5 |
9 | ClF2CCOONa, 3 | DMF, 2 | |||
10 | ClF2CCOONa, 3 | Na2CO3, 3 | DMF, 2 | 40 | <5 |
11 | ClF2CCOONa, 3 | Cs2CO3, 3 | DMF, 2 | 36 | <5 |
12 | ClF2CCOONa, 3 | K2CO3, 2.4 | DMF, 2 | 27 | <5 |
13 | ClF2CCOONa, 3 | K2CO3, 4 | DMF, 2 | 35 | <5 |
14 | BrF2CCOOK, 3 | K2CO3, 3 | DMF, 2 | 15 | <5 |
15 | BrF2CCOOC2H5, 3 | K2CO3, 3 | DMF, 2 | 31 | <5 |
16 | Ph3P+CF2COO-, 3 | K2CO3, 3 | DMF, 2 | ||
17 | ClF2CCOONa, 2.4 | K2CO3, 3 | DMF, 2 | 15 | <5 |
18 | ClF2CCOONa, 4 | K2CO3, 3 | DMF, 2 | 44 | <5 |
Table 4 Optimization of reaction conditionsa
Entry | Difluoromethylating reagent, n/mmol | Base, n/mmol | Solvent, V/mL | Yield(%)b | |
---|---|---|---|---|---|
3a | 4a | ||||
1 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 2 | 50 | <5 |
2 | ClF2CCOONa, 3 | K2CO3, 3 | PhMe, 2 | ||
3 | ClF2CCOONa, 3 | K2CO3, 3 | MeCN, 2 | ||
4 | ClF2CCOONa, 3 | K2CO3, 3 | DMAc, 2 | 26 | <5 |
5 | ClF2CCOONa, 3 | K2CO3, 3 | NMP, 2 | 16 | <5 |
6 | ClF2CCOONa, 3 | K2CO3, 3 | EA, 2 | ||
7 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 5 | 13 | <5 |
8 | ClF2CCOONa, 3 | K2CO3, 3 | DMF, 1 | 13 | <5 |
9 | ClF2CCOONa, 3 | DMF, 2 | |||
10 | ClF2CCOONa, 3 | Na2CO3, 3 | DMF, 2 | 40 | <5 |
11 | ClF2CCOONa, 3 | Cs2CO3, 3 | DMF, 2 | 36 | <5 |
12 | ClF2CCOONa, 3 | K2CO3, 2.4 | DMF, 2 | 27 | <5 |
13 | ClF2CCOONa, 3 | K2CO3, 4 | DMF, 2 | 35 | <5 |
14 | BrF2CCOOK, 3 | K2CO3, 3 | DMF, 2 | 15 | <5 |
15 | BrF2CCOOC2H5, 3 | K2CO3, 3 | DMF, 2 | 31 | <5 |
16 | Ph3P+CF2COO-, 3 | K2CO3, 3 | DMF, 2 | ||
17 | ClF2CCOONa, 2.4 | K2CO3, 3 | DMF, 2 | 15 | <5 |
18 | ClF2CCOONa, 4 | K2CO3, 3 | DMF, 2 | 44 | <5 |
[1] | Cheng Y., Guo A. L., Guo D. S., Curr. Org. Chem., 2010, 14, 977—999 |
[2] | Sperry J. B., Sutherland K., Org. Process Res. Dev., 2011, 15(3), 721—725 |
[3] | Fuchibe K., Koseki Y., Aono T., Sasagawa H., Ichikawa J., J. Fluorine Chem., 2012, 133, 52—60 |
[4] | Sperry J. B., Farr R. M., Levent M., Ghosh M., Hoagland S. M., Varsolona R. J., Sutherland K., Org. Process Res. Dev., 2012, 16(11), 1854—1860 |
[5] | Prakash G. K. S., Ganesh S. K., Jones J. P., Kulkarni A., Masood K., Swabeck J., Olah G. A., Angew. Chem. Int. Ed., 2012, 51(48), 12090—12094 |
[6] | Levin V. V., Zemtsov A. A., Struchkova M. I., Dilman A. D., Org. Lett., 2013, 15(4), 917—919 |
[7] | Liu G., Wang X., Xu X. H., Lu X., Tokunaga E., Tsuzuki S., Schibata N., Org. Lett., 2013, 15(5), 1044—1047 |
[8] | Min Q. Q., Yin Z., Feng Z., Guo W. H., Zhang X., J. Am. Chem. Soc., 2014, 136(4), 1230—1233 |
[9] | Matheis C., Jouvin K., Goossen L. J., Org. Lett., 2014, 16(22), 5984—5987 |
[10] | Thomoson C. S., Wang L., Dolbier W. R. J., J. Fluorine Chem., 2014, 168, 34—39 |
[11] | Huang Y., He X., Li H., Weng Z., Eur. J. Org. Chem., 2014, 33, 7324—7328 |
[12] | Wang W., Hua M., Huang Y., Zhang Q., Zhang X., Wu J., Chem. Res. Chinese Universities, 2015, 31(3), 362—366 |
[13] | Zhao Y., Huang W., Zheng J., Hu J., Org. Lett., 2011, 13(19) , 5342—5345 |
[14] | Wang F., Huang W., Hu J., Chin. J. Chem., 2011, 29(12), 2717—2721 |
[15] | Iida T., Hashimoto R., Aikawa K., Ito S., Mikami K., Angew. Chem. Int. Ed., 2012, 51(38), 9535—9538 |
[16] | Dolbier W. R. J., Battiste M. A., Chem. Rev., 2003, 103(4), 1071—1098 |
[17] | Leroux F., Jeschke P., Schlosser M., Chem. Rev., 2005, 105(3), 827—856 |
[18] | Taylor E. C., Macor J. E., Pont J. L., Tetrahedro., 1987, 43(21), 5145—5158 |
[19] | Mederski W. W. K. R., Osswald M., Dorsch D., Christadler M., Schmitges C. J., Wilm C., Bioorg. Med. Chem. Lett., 1999, 9(4), 619—622 |
[20] | Rádl S. , KonviČcka P. , Váchal P. , J. Heterocycl. Chem. J. Heterocycl. Chem.,2000, 37(4), 855—862 |
[21] | Firouzabadi H., Jamalian A., Tamami M., Iranpoor N., Lett. Org. Chem., 2006, 3(4), 267—270 |
[22] | Sardarian A. R., Shahsavari-Fard Z., Shahsavari H. R., Ebrahimi Z., Tetrahedron Lett., 2007, 48(14), 2639—2643 |
[23] | Tamilselvana P., Basavarajub Y. B., Sampathkumarc E., Murugesand R., Catal. Commun., 2009, 10(5), 716—719 |
[24] | Ramón R. S., Bosson J., Díez-González S., Marion N., Nolan S. P., J. Org. Chem., 2010, 75(4), 1197—1202 |
[25] | Davoodnia A., Khojastehnezhad A., Bakavoli M., Tavakoli-Hoseini N., Chinese J. Chem., 2011, 29(5), 978—982 |
[26] | Whiting E., Lanning M. E., Scheenstra J. A., Fletcher S., J. Org. Chem., 2015, 80(2), 1229—1234 |
[27] | Hegedüs A., Cwik A., Hell Z., Horváth Z., Esekc Á., Uzsokic M., Green Chem., 2002, 4, 618—620 |
[28] | Ma D. L., Li X. L., Hao L., Zhang P. Z., Chen H., Zhao Y., Chem. J. Chinese Universities, 2014, 35(5), 959—964 |
(马东来, 李小六, 郝乐, 张平竹, 陈华, 赵影. 高等学校化学学报, 2014, 35(5), 959—964) | |
[29] | Kuang D. Z., Feng Y. L., Yu J. X., Zhang F. X., Jiang W. J., Peng Y., Zhu X. M., Tan Y. X., Chem. J. Chinese Universities, 2014, 35(8), 1629—1634 |
(邝代治, 冯泳兰, 庾江喜, 张复兴, 蒋伍玖, 彭雁, 朱小明, 谭宇星. 高等学校化学学报, 2014, 35(8), 1629—1634) | |
[30] | Li L., Wang F., Ni C., Hu J., Angew. Chem. Int. Ed., 2013, 52(47), 12390—12394 |
[31] | Aldred R., Johnston R., Levin D., Neilan J., J. Chem. Soc. Perkin. Trans. 1,1994, 13, 1823—1831 |
[32] | Babua M. S. S., Krishnab P. G., Reddya K. H., Philip G. H., Main Group Chem., 2009, 8(2), 101—114 |
[33] | Aakeröy C. B., Sinha A. S., Epa K. N., Spartz C. L., Desper J., Chem. Commun., 2012, 48(92), 11289—11291 |
[34] | Kao C., Chen K., Journal of the Chinese Chemical Society,1935, 3, 22—26 |
[35] | Moghadam M., Tangestaninejad S., Mirkhani V., Mohammadpoor-Baltork I., Moosavifar M., Appl. Catal. A-Gen., 2009, 358(2), 157—163 |
[36] | Gigant N., Claveau E., Bouyssou P., Gillaizeau I., Org. Lett., 2012, 14(3), 844—847 |
[37] | Xu J., Wang X., Shao C., Su D., Cheng G., Hu Y., Org. Lett., 2010, 12(9), 1964—1967 |
[38] | Shelke K. F., Spakal S. B., Shitole N. V., Shingate B. B., Shingare M. S., Org. Commun., 2009, 2(3), 72—78 |
[39] | Ohsawa A., Kawaguchi T., Igeta H., Chem. Pharm. Bull., 1982, 30(12), 4352—4358 |
[40] | McIntyre N. R., Lowe E. W. J., Merkler D. J., J. Am. Chem. Soc., 2009, 131, 10308—10319 |
[41] | Martin B., Christoph B., Christine B., Markus G., Bibia H., Thierry S., Jodi T. W., [Ortho-Bi(hetero)aryl]-[2-(meta-bi(hetero)aryl)-pyrrolidin-1-yl]-methanone Derivatives as Orexin Receptor Antagonists and Their Preparation WO 2014057435, 2014-04-17 |
[1] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[2] | BI Gening, XIAO Xiaohua, LI Gongke. Development and Validation of Multiple Physical Fields Coupling Model for Microwave-assisted Extraction [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210739. |
[3] | DONG Yanhong, LU Xinhuan, YANG Lu, SUN Fanqi, DUAN Jingui, GUO Haotian, ZHANG Qinjun, ZHOU Dan, XIA Qinghua. Preparation of Bifunctional Metal-organic Framework Materials and Application in Catalytic Olefins Epoxidation [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220458. |
[4] | WANG Yong, DONG Biao, SUN Jiao, DONG Delu, SUN Liankun. Synthesis and Spectral Properties of Ag/SiO2-Al2O3 Composite Nanomaterial Based on Molecular Sieve Template [J]. Chem. J. Chinese Universities, 2021, 42(10): 3233. |
[5] | ZHOU Chunni, ZHENG Ziang, PENG Wangming, WANG Hongbo, ZHANG Yumin, WANG Liang, XIAO Biao. Microwave Assisted Rhodium-catalyzed C—H Activation/cyclization of Diaryl Phosphoramides and Alkynes † [J]. Chem. J. Chinese Universities, 2020, 41(4): 726. |
[6] | LIANG Longqi, CHEN Cailing, YU Ying, LI Yuxin, LI Chunguang, SHI Zhan. Synthesis, Luminescence and Cell Imaging Properties of Amino Acid Capped YVO4∶Eu Nanoparticles [J]. Chem. J. Chinese Universities, 2020, 41(3): 425. |
[7] | LIN Junjie, WANG Shuang, LI Weiqiang, CUI Xin, HUANG Chao. Efficient Synthesis of Pyridine [2,3-d]pyrimidine Derivatives by Catalyst-free Tandem Cyclization Under Microwave Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(12): 2749. |
[8] | QIN Wenbing, LIN Weifeng, LI Xin, XIONG Wei, LIU Guokai. Difluoromethylation of Dicyanoalkylidenes by Electrophilic S-(Difluoromethyl)sulfonium Salt: Efficient Construction of Difluoromethylated All-carbon-substituted Centers† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2230. |
[9] | HUANG He, LI Chunguang, SHI Zhan, FENG Shouhua. Microwave-assisted Hydrothermal Synthesis of Carbon Dots Based on Tyrosine and Their Application in Ion Detection and Bioimaging [J]. Chem. J. Chinese Universities, 2019, 40(8): 1579. |
[10] | MA Dongwei,TIAN Runsai,LIU Zhenjiang,FENG Yuanyuan,DING Hongyu,FENG Jijun. Microwave-assisted Synthesis and Electrochemical Performance of Na-Doped Cathode Materials Li2-xNaxMnSiO4/C† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1280. |
[11] | GAN Siping, LI Guohua, ZHAI Jiaxin, ZHANG Xueming, ZHU Mengmeng, HU Enyan, ZHANG Xiaorui, ZHANG Jingru. Synthesis of Boron Nitride Nanosheets Supported Pd(OAc)2 and the Catalytic Microwaves-assisted Heck Reactions [J]. Chem. J. Chinese Universities, 2019, 40(11): 2314. |
[12] | SU Rui,WANG Yihan,CHEN Changbao,SUN Xiuli,LIU Shuying,YANG Hongmei. Determination of Brominated Flame Retardants in Environmental Water by Microwave-assisted Ionic Liquid/ionic Liquid Dispersive Liquid-liquid Microextraction Coupled with DART-Orbitrap Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1934. |
[13] | XU Yuan, CHEN Yanhua, DING Lan. One-pot Microwave-assisted Synthesis of Passivated Fluorescent Carbon Dots for Fe(Ⅲ) Detection† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1420. |
[14] | WANG Wenliang,SHI Yujie,WANG Shaohua,DANG Zepan,LI Xinping. Pyrolysis Behavior and Product Characteristics of Microwave co-Pyrolysis of Cellulose and Waste Tire† [J]. Chem. J. Chinese Universities, 2018, 39(5): 964. |
[15] | GAO Feilong, LI Yongcun, LUAN Yunbo, XUE Zhicheng, GUO Zhangxin, ZHANG Qi, WU Guiying. Enhancement Mechanisms of Mechanical and Self-Healing Properties of Thermoplastic Polyurethane Composites Induced by Different G-CNT Hybridization Systems† [J]. Chem. J. Chinese Universities, 2018, 39(4): 832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||