Chem. J. Chinese Universities ›› 2015, Vol. 36 ›› Issue (6): 1146.doi: 10.7503/cjcu20150055
• Physical Chemistry • Previous Articles Next Articles
LI Shaochen, YU Guangtao*(), CHEN Wei, ZHOU Zhongjun, HUANG Xuri*(
)
Received:
2015-01-19
Online:
2015-06-10
Published:
2015-05-15
Contact:
YU Guangtao,HUANG Xuri
E-mail:yugt@jlu.edu.cn;huangxr@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Shaochen, YU Guangtao, CHEN Wei, ZHOU Zhongjun, HUANG Xuri. Investigation on Structures and Nonlinear Optical Properties of PPV and Its Derivatives Systems with Adsorbing Alkali Metal Atom†[J]. Chem. J. Chinese Universities, 2015, 36(6): 1146.
Method | MP2 6-311++G(3df,3pd) | MP2 6-31+G(d) | M06-2x 6-31+G(d) | B3LYP 6-31+G(d) | HF 6-31+G(d) | CAM-B3LYP 6-31+G(d) | LC-BLYP 6-31+G(d) |
---|---|---|---|---|---|---|---|
β0/a.u. | 11258 | 11922 | 11566 | 11735 | 12200 | 13618 | 13872 |
Error(%) | 5.9 | 2.7 | 4.2 | 8.4 | 21.0 | 23.2 |
Table 1 Static first hyperpolarizability(β0) and the corresponding error*
Method | MP2 6-311++G(3df,3pd) | MP2 6-31+G(d) | M06-2x 6-31+G(d) | B3LYP 6-31+G(d) | HF 6-31+G(d) | CAM-B3LYP 6-31+G(d) | LC-BLYP 6-31+G(d) |
---|---|---|---|---|---|---|---|
β0/a.u. | 11258 | 11922 | 11566 | 11735 | 12200 | 13618 | 13872 |
Error(%) | 5.9 | 2.7 | 4.2 | 8.4 | 21.0 | 23.2 |
Fig.1 Optimized geometries of Li@[PPV]2 [the top(A) and side(B) views] and the general formula of Li@[X-(PPV)n-Y](n=2—4; X, Y=H, —NH2, —CN) systemsThe d value is the vertical distance between the Li atom and benzene ring of [X-(PPV)n-Y].
System | d/nm | Ead/ (kJ·mol-1) | NBO/e | α/a.u. | β0/a.u. | f0 | ΔE/eV | Δμ/a.u. | (Δμ·f0/ ΔE3)/a.u. | CT* |
---|---|---|---|---|---|---|---|---|---|---|
Li@[(PPV)2] | 0.171 | 62.3 | 0.834 | 310 | 1.16×104 | 0.6020 | 2.907 | 1.083 | 534 | H→L+9H→L+11 |
Li@[(PPV)3] | 0.172 | 66.0 | 0.837 | 549 | 6.29×104 | 0.7236 | 2.591 | 2.054 | 1720 | H→L+1 H→L+5 |
Li@[(PPV)4] | 0.172 | 66.9 | 0.838 | 783 | 1.37×105 | 0.4791 | 2.360 | 2.627 | 1927 | H→L+1 H→L+6 |
[(PPV)2] | 223 | 249 | 1.2516 | 3.835 | 0.219 | 98 | H→L | |||
[(PPV)3] | 382 | 518 | 2.1335 | 3.351 | 0.175 | 200 | H-1→L+1 H→L | |||
[(PPV)4] | 555 | 756 | 3.0035 | 3.109 | 0.147 | 296 | H-1→L+1 H→L |
Table 2 Vertical distance(d) between the Li atom and Li@[PPV]n(n=2—4) systems, the adsorption energies(Ead), NBO charges of doped Li atoms, the polarizability(α), the first hyperpolarizability(β0), the oscillator strength(f0), the transition energy(ΔE), the dipole moment(Δμ) between the crucial excited state and ground state, the estimated values under the two-level approach(Δμ·f0/ΔE3), and the compositions of the crucial transition(CT) state for Li@[PPV]n and [PPV]n
System | d/nm | Ead/ (kJ·mol-1) | NBO/e | α/a.u. | β0/a.u. | f0 | ΔE/eV | Δμ/a.u. | (Δμ·f0/ ΔE3)/a.u. | CT* |
---|---|---|---|---|---|---|---|---|---|---|
Li@[(PPV)2] | 0.171 | 62.3 | 0.834 | 310 | 1.16×104 | 0.6020 | 2.907 | 1.083 | 534 | H→L+9H→L+11 |
Li@[(PPV)3] | 0.172 | 66.0 | 0.837 | 549 | 6.29×104 | 0.7236 | 2.591 | 2.054 | 1720 | H→L+1 H→L+5 |
Li@[(PPV)4] | 0.172 | 66.9 | 0.838 | 783 | 1.37×105 | 0.4791 | 2.360 | 2.627 | 1927 | H→L+1 H→L+6 |
[(PPV)2] | 223 | 249 | 1.2516 | 3.835 | 0.219 | 98 | H→L | |||
[(PPV)3] | 382 | 518 | 2.1335 | 3.351 | 0.175 | 200 | H-1→L+1 H→L | |||
[(PPV)4] | 555 | 756 | 3.0035 | 3.109 | 0.147 | 296 | H-1→L+1 H→L |
Fig.5 Optimized geometries of Li@[NH2-(PPV)n](A1—A3), Li@[(PPV)n-NH2](B1—B3), Li@[CN-(PPV)n](C1—C3], Li@[(PPV)n-CN](D1—D3), Li@[NH2-(PPV)n-CN](E1—E3)n=2—4.
Fig.6 Comparison of the first hyperpolarizability β0 values for Li@[PPV]n, Li@[NH2-(PPV)n] and Li@[(PPV)n-NH2] systems(A) and Li@[PPV]n, Li@[CN-(PPV)n] and Li@[(PPV)n-CN] systems(B)
System | d/nm | Ead/(kJ·mol-1) | NBO/e | α/a.u. | β0/a.u. |
---|---|---|---|---|---|
Li@[NH2-(PPV)2] | 0.173 | 67.3 | 0.846 | 329 | 1.18×104 |
Li@[NH2-(PPV)3] | 0.173 | 71.9 | 0.849 | 582 | 7.06×104 |
Li@[NH2-(PPV)4] | 0.174 | 68.6 | 0.832 | 831 | 1.61×105 |
Li@[(PPV)2-NH2] | 0.171 | 54.3 | 0.831 | 323 | 5.69×103 |
Li@[(PPV)3-NH2] | 0.172 | 62.3 | 0.835 | 555 | 4.16×104 |
Li@[(PPV)4-NH2] | 0.172 | 65.5 | 0.837 | 789 | 1.01×105 |
Li@[CN-(PPV)2] | 0.171 | 70.2 | 0.852 | 354 | 2.01×104 |
Li@[CN-(PPV)3] | 0.171 | 71.1 | 0.853 | 578 | 5.79×104 |
Li@[CN-(PPV)4] | 0.171 | 71.5 | 0.854 | 788 | 9.41×104 |
Li@[(PPV)2-CN] | 0.173 | 78.2 | 0.841 | 393 | 2.73×104 |
Li@[(PPV)3-CN] | 0.172 | 73.6 | 0.841 | 683 | 1.56×105 |
Li@[(PPV)4-CN] | 0.172 | 70.6 | 0.840 | 913 | 2.85×105 |
Table 3 Vertical distance(d) between the Li atom and Li@[PPV]n(n=2—4) systems, the adsorption energies(Ead), NBO charges of doped Li atoms, the polarizability(α), the first hyperpolari-zability(β0) for Li@[NH2-(PPV)n], Li@[(PPV)n-NH2], Li@[CN-(PPV)n] and Li@[(PPV)n-CN] systems, respectively
System | d/nm | Ead/(kJ·mol-1) | NBO/e | α/a.u. | β0/a.u. |
---|---|---|---|---|---|
Li@[NH2-(PPV)2] | 0.173 | 67.3 | 0.846 | 329 | 1.18×104 |
Li@[NH2-(PPV)3] | 0.173 | 71.9 | 0.849 | 582 | 7.06×104 |
Li@[NH2-(PPV)4] | 0.174 | 68.6 | 0.832 | 831 | 1.61×105 |
Li@[(PPV)2-NH2] | 0.171 | 54.3 | 0.831 | 323 | 5.69×103 |
Li@[(PPV)3-NH2] | 0.172 | 62.3 | 0.835 | 555 | 4.16×104 |
Li@[(PPV)4-NH2] | 0.172 | 65.5 | 0.837 | 789 | 1.01×105 |
Li@[CN-(PPV)2] | 0.171 | 70.2 | 0.852 | 354 | 2.01×104 |
Li@[CN-(PPV)3] | 0.171 | 71.1 | 0.853 | 578 | 5.79×104 |
Li@[CN-(PPV)4] | 0.171 | 71.5 | 0.854 | 788 | 9.41×104 |
Li@[(PPV)2-CN] | 0.173 | 78.2 | 0.841 | 393 | 2.73×104 |
Li@[(PPV)3-CN] | 0.172 | 73.6 | 0.841 | 683 | 1.56×105 |
Li@[(PPV)4-CN] | 0.172 | 70.6 | 0.840 | 913 | 2.85×105 |
System | f0 | ΔE/eV | Δμ/a.u. | (Δμ· f0/ΔE3)/a.u. | CT |
---|---|---|---|---|---|
Li@[NH2-(PPV)2] | 0.7360 | 2.875 | 1.907 | 1189 | H→L, H→L+1 |
Li@[NH2-(PPV)3] | 0.6424 | 2.584 | 2.850 | 2135 | H→L+1, H→L+7 |
Li@[NH2-(PPV)4] | 0.5948 | 2.354 | 4.245 | 3895 | H→L+2, H→L+3 |
Li@[(PPV)2-CN] | 0.6532 | 2.744 | 1.853 | 1179 | H→L+1, H→L+2 |
Li@[(PPV)3-CN] | 0.7612 | 2.363 | 3.575 | 4150 | H→L, H→L+2 |
Li@[(PPV)4-CN] | 0.5931 | 1.444 | 9.834 | 38981 | H→L, H→L+2 |
Table 4 Oscillator strength(f0), the transition energy(ΔE), the dipole moment(Δμ) between the crucial excited state and ground state, the estimated values under the two-level approach(Δμ·f0/ΔE3), and the compositions of the crucial transition(CT) state for for Li@[NH2-(PPV)n] and Li@[(PPV)n-CN](n=2—4) systems, respectively
System | f0 | ΔE/eV | Δμ/a.u. | (Δμ· f0/ΔE3)/a.u. | CT |
---|---|---|---|---|---|
Li@[NH2-(PPV)2] | 0.7360 | 2.875 | 1.907 | 1189 | H→L, H→L+1 |
Li@[NH2-(PPV)3] | 0.6424 | 2.584 | 2.850 | 2135 | H→L+1, H→L+7 |
Li@[NH2-(PPV)4] | 0.5948 | 2.354 | 4.245 | 3895 | H→L+2, H→L+3 |
Li@[(PPV)2-CN] | 0.6532 | 2.744 | 1.853 | 1179 | H→L+1, H→L+2 |
Li@[(PPV)3-CN] | 0.7612 | 2.363 | 3.575 | 4150 | H→L, H→L+2 |
Li@[(PPV)4-CN] | 0.5931 | 1.444 | 9.834 | 38981 | H→L, H→L+2 |
Fig.7 Crucial transition states of the Li@[NH2-(PPV)n], Li@[(PPV)n-CN] and Li@[NH2-(PPV)n-CN] systems(n=2—4) The relatively large component cofficients are marked.
System | d/nm | Ead/ (kJ·mol-1) | NBO/e | α/ a.u. | β0/a.u. | f0 | ΔE/ eV | Δμ/ a.u. | (Δμ· f0/ ΔE3)/a.u. | CT |
---|---|---|---|---|---|---|---|---|---|---|
Li@[NH2-(PPV)2-CN] | 0.174 | 84.0 | 0.853 | 416 | 2.74×104 | 1.0662 | 2.734 | 1.860 | 1953 | H→L+1, H→L+9 |
Li@[NH2-(PPV)3-CN] | 0.174 | 75.2 | 0.836 | 737 | 1.80×105 | 0.5581 | 1.400 | 4.553 | 18635 | H→L, H→L+2 |
Li@[NH2-(PPV)4-CN] | 0.174 | 72.7 | 0.835 | 987 | 3.56×105 | 0.6597 | 1.363 | 9.001 | 47190 | H→L, H→L+3 |
Table 5 Vertical distance(d) between the Li atom and Li@[NH2-(PPV)n-CN](n=2—4) systems, the adsorption energies(Ead), NBO charges of doped Li atoms, the polarizability(α), the first hyperpolarizability(β0), the oscillator strength(f0), the transition energy(ΔE), the dipole moment(Δμ) between the crucial excited state and ground state, the estimated values under the two-level approach(Δμ·f0/ΔE3), and the compositions of the crucial transition(CT) state for Li@[NH2-(PPV)n-CN](n=2—4) systems
System | d/nm | Ead/ (kJ·mol-1) | NBO/e | α/ a.u. | β0/a.u. | f0 | ΔE/ eV | Δμ/ a.u. | (Δμ· f0/ ΔE3)/a.u. | CT |
---|---|---|---|---|---|---|---|---|---|---|
Li@[NH2-(PPV)2-CN] | 0.174 | 84.0 | 0.853 | 416 | 2.74×104 | 1.0662 | 2.734 | 1.860 | 1953 | H→L+1, H→L+9 |
Li@[NH2-(PPV)3-CN] | 0.174 | 75.2 | 0.836 | 737 | 1.80×105 | 0.5581 | 1.400 | 4.553 | 18635 | H→L, H→L+2 |
Li@[NH2-(PPV)4-CN] | 0.174 | 72.7 | 0.835 | 987 | 3.56×105 | 0.6597 | 1.363 | 9.001 | 47190 | H→L, H→L+3 |
[1] | Eaton D. F., Science, 1991, 253, 281—287 |
[2] | Kanis D. R., Ratner M. A., Marks T. J., Chem. Rev., 1994, 94, 195—242 |
[3] | Yu G. T., Zhao X. G., Niu M., Huang X. R., Zhang H., Chen W., J. Mater. Chem. C, 2013, 1, 3833—3841 |
[4] | Liu C. G., Guan W., Song P., Yan L. K., Su Z. M., Inorg. Chem., 2009, 48, 6548—6554 |
[5] | Cornelis D., Franz E., Asselberghs I., Clays K., Verbiest T., Koeckelberghs G., J. Am. Chem. Soc., 2011, 133, 1317—1327 |
[6] | Maury O., Viau L., Senechal K., Corre B., Guegan J. P., Renouard T., Ledoux I., Zyss J., Bozec L. H., Chem. Eur. J., 2004, 10, 4454—4466 |
[7] | Lee S. H., Park J. R., Jeong M. Y., Kim H. M., Li S. J., Song J., Ham S., Jeon S. J., Cho B. R., Chem. Phys. Chem., 2006, 7, 206—212 |
[8] | Chen W., Li Z. R., Wu D., Li Y., Sun C. C., Gu F. L., J. Am. Chem. Soc., 2005, 127, 10977—10981 |
[9] | Yu G.T., Huang X. R., Chen, W., Sun C. C., J. Comput. Chem., 2011, 32, 2005—2011 |
[10] | Li S. C, Yu G. T., Chen W., Huang X. R., Chem. J. Chinese Universities, 2014, 35(11), 2390—2396 |
(李绍晨, 于广涛, 陈巍, 黄旭日.高等学校化学学报, 2014,35(11), 2390—2396) | |
[11] | Zhao X. G., Yu G. T., Huang X. R., Chen W., Niu M., J. Mol. Model., 2013, 19, 5601—5610 |
[12] | Niu M., Yu G. T., Yang G. H., Chen W., Zhao X. G., Huang X. R., Inorg. Chem., 2014, 53, 349—358 |
[13] | Muhammad S., Xu H. L., Liao Y., Kan Y. H., Su Z. M., J. Am. Chem. Soc., 2009, 131, 11833—11840 |
[14] | Chen W., Li Z. R., Wu D., Li R. Y., Sun C. C., J. Phys. Chem. B, 2005, 109, 601—608 |
[15] | Xu H. L., Li Z. R., Wu D., Wang B. Q., Li Y., Gu F. L., Aoki Y., J. Am. Chem. Soc., 2007, 129, 2967—2970 |
[16] | Xu H. L., Li Z. R., Wu D., Ma F., Li Z. J., Gu F. L., J. Phys. Chem. C, 2009, 113, 4984—4986 |
[17] | Xu H. L., Zhong R. L., Sun S. L., Su Z. M., J. Phys. Chem. C, 2011, 115, 16340—16346 |
[18] | Ma F., Zhou Z. J., Li Z. R., Wu D., Li Y., Li Z. S., Chem. Phys. Lett., 2010, 488, 182—186 |
[19] | Shi Z. M., Chen W., Wan S. Q., Li H., Huang X. R., Chem. J. Chinese Universities, 2013, 34(2), 441—446 |
(石芝铭, 陈巍, 万素琴, 李辉, 黄旭日.高等学校化学学报, 2013,34(2), 441—446) | |
[20] | Junkers T., Vandenbergh J., Adriaensens P., Lutsen L., Vanderzande D., Polym. Chem., 2012, 3, 275—285 |
[21] | Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Friend R. H., Holmes A. B., Nature, 1990, 347, 539—541 |
[22] | Greenham N. C., Moratti S. C., Bradely D. D. C., Friend R. H., Holmes A. B., Nature, 1993, 365, 628—630 |
[23] | Gillissen S., Lutsen L., Vanderzande D., Gelan J., Synth. Met., 2001, 119, 137—13 |
[24] | Yu G. T., Huang X. R., Li S. C., Chen W., Int. J. Quantum. Chem., 2015, 115, 671—679 |
[25] | Wei W., Bai F. Q., Xia B. H., Chen H. B., Zhang H. X., Chem. Res. Chinese Universities, 2013, 29(5), 962—968 |
[26] | Zhang S. S., Shi L. L., Su Z. M., Ceng Y., Zhao L., Chem. Res. Chinese Universities, 2013, 29(2), 361—365 |
[27] | Chen J., Wang J., Bai F. Q., Zheng Q. C., Zhang H. X., Chem. Res. Chinese Universities, 2012, 28(4), 696—702 |
[28] | Wang X. L., Zhang K., Chem. Res. Chinese Universities, 2012, 28(4), 703—706 |
[29] | Lewis E. J., Larry R. D., Bruce H. R., Acc. Chem. Res., 2014, 47, 3258—3265 |
[30] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E. Jr., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, 2010 |
[31] | Oudar J. L., J. Chem. Phys., 1977, 67, 446—457 |
[1] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[2] | CHENG Xiao, K BORA Debajeet, GLANS Per⁃Anders, GUO Jinghua, LUO Yi. An In-depth Theoretical Study of Ligand Field and Charge Transfer Effects on Co2+2pL2,3-edges X-ray Absorption Spectra [J]. Chem. J. Chinese Universities, 2021, 42(7): 2197. |
[3] | CHANG Hui, YAO Shuangquan, HAN Wenjia, KANG Xiena, ZHANG Li, LI Xinping, ZHANG Zhao. Highly Solvatochromic Terpyridine Compounds for Identification of Butanol Isomers [J]. Chem. J. Chinese Universities, 2021, 42(3): 902. |
[4] | WANG Linshuo, LI Kunjie, LIU Yumin, ZHAO Ruihong, LI Qing, QIAN Xin, ZHANG Fan, XUE Zhiwei. Theoretical Studies of Triphenyl-s-triazine Groups Regulating Photoelectric Properties of Sensitizing Dyes† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1653. |
[5] | KANG Huimin,WANG Hongqiang,WANG Huiying,WU Lixin,QIU Yongqing. Theoretical Study on the Second-order Nonlinear Optical Properties of a Porphyrin-o-Carborane-Boron-dipyrromethene Triad Compound† [J]. Chem. J. Chinese Universities, 2019, 40(5): 965. |
[6] | WU Juan, WANG Hongqiang, LIU Xiaoyun, SHI Zhiyuan, QIU Yongqing. Theoretical Study on the Second-order Nonlinear Optical Properties of D-A-D(D') o-Carborane Triads† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1490. |
[7] | LIU Chong, LIU Lilai, NIE Jiahui. Synthesis of Carbon Ball Modified g-C3N4 for Improved Photocatalytic Activity† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1511. |
[8] | CHEN Deli, YANG Pengyong, WU Shengnan, HE Sihui, WANG Fangfang. Ab initio Molecular Dynamics Simulations on the Structures and Stabilities of Pd Clusters Encapsulated UiO-66 Materials† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1210. |
[9] | CHEN Jiuju. Theoretical Studies on the of Ambipolar Charge Transport in Terazulene Single Crystal† [J]. Chem. J. Chinese Universities, 2016, 37(1): 121. |
[10] | ZHANG Xueying, YU Guangtao, CHEN Wei, HUANG Xuri. Theoretical Investigation on Nonlinear Optical Properties of the Donor/Acceptor-decorated Zigzag Graphene Nanoribbons with the 5-9 Defect† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2204. |
[11] | PANG Ran, JIN Xi, ZHAO Liubin, DING Songyuan, WU Deyin, TIAN Zhongqun. Quantum Chemistry Study of Electrochemical Surface-enhanced Raman Spectroscopy† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2087. |
[12] | HOU Na, LI Ying, WU Di, LI Zhiru. Theoretical Studies on Structures and Nonlinear Optical Properties of Superalkali-based Electrides Li3@calix[4]pyrrole and Li3O@calix[4]pyrrole† [J]. Chem. J. Chinese Universities, 2014, 35(4): 798. |
[13] | JIANG Xin, QIN Xiaoyu, GONG Mengdi, LI Xiuling, LI Guangzhi, YANG Libin, ZHAO Bing. Improvement of Surface-enhanced Raman Scattering Properties of TiO2 Nanoparticles by Metal Ni Doping† [J]. Chem. J. Chinese Universities, 2014, 35(3): 488. |
[14] | CHENG Rongmin, LI Na, ZHAN Conghong. Influence of Co-existing Species on Charge Transfer in Dye-sensitized TiO2 Nanocrystalline System† [J]. Chem. J. Chinese Universities, 2014, 35(2): 351. |
[15] | LI Shaochen, YU Guangtao, CHEN Wei, HUANG Xuri. Investigation on Structures and Nonlinear Optical Properties of Super-short Carbon Nanotube Systems with Surface-adsorbing Lithium Atoms† [J]. Chem. J. Chinese Universities, 2014, 35(11): 2390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||