高等学校化学学报

• 研究论文 • 上一篇    

原位构筑Co-MOFs/碳纤维复合电芬顿阴极及其高效降解四环素的研究

秦彩翼,李娟,李莹,张久文,龙含意,李信宇,米楠,刘金炜,李华   

  1. 中央民族大学
  • 收稿日期:2025-04-21 修回日期:2025-05-20 网络首发:2025-05-23 发布日期:2025-05-23
  • 通讯作者: 李华 E-mail:lihua@muc.edu.cn
  • 基金资助:
    国家自然科学基金(批准号:22208004)和国家民委重点实验室自主课题项目(批准号:KLEEMA202302)资助

In-situ Construction of Co-MOFs/Carbon Fiber Composite Cathodes and their Efficient Degradation of Tetracycline in the Electro-Fenton System

QIN Caiyi, LI Juan, LI Ying, ZHANG Jiuwen, LONG Hanyi, LI Xinyu, MI Nan, LIU Jinwei, LI Hua   

  1. Minzu University of China
  • Received:2025-04-21 Revised:2025-05-20 Online First:2025-05-23 Published:2025-05-23
  • Contact: Hua Li E-mail:lihua@muc.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(No. 22208004) and the Key Laboratory of the National Ethnic Affairs Commission Autonomous Subject Project, China(No. LEEMA202302)

摘要: 传统的芬顿氧化法通过Fe2+催化H2O2生成羟基自由基(.OH),能够高效降解水中抗生素类有机污染物,但因铁泥产生量大、Fe2+再生困难及二次污染的问题限制了其广泛应用。电芬顿技术结合电化学和芬顿氧化过程,可以显著提升H2O2的活化效率,使用钴基金属有机框架(Co-MOFs)作为电芬顿催化剂具有高效催化活性和稳定性的同时,可以避免铁泥的产生,达到高效降解去除水中抗生素类有机污染物的目的。本文在碳纤维电极上原位生长Co-MOFs纳米晶材料,并以该复合材料为阴极,铂片为阳极,构建非均相电芬顿体系。通过调控材料的制备方法、配体类型、配体和金属比例、煅烧温度及氛围、体系电压、H2O2添加量等条件,探索出最佳制备条件:在水热反应条件下,对苯二甲酸和钴盐以1:1的比例配位合成Co-MOFs,并原位生长于碳纤维基底上,100℃空气氛围下煅烧活化。优化反应体系,确定最佳反应条件:电压为-0.8 V及H2O2添加量为60μL,最终90 min时四环素的降解效果为91%。

关键词: 芬顿反应, 电催化, 金属有机框架化合物, 抗生素

Abstract:

The traditional Fenton method catalyzes the H2O2 by Fe2+ to generate hydroxyl radicals (.OH) , which can efficiently degrade antibiotic organic pollutants in water. However, its wide application is limited by the large amount of iron sludge, the difficulty of Fe2+ regeneration and the problems of secondary pollution. The Electro-Fenton technology combines electrochemistry and the Fenton oxidation process to significantly improve the efficiency of H2O2 activation. The use of cobalt-based metal organic frameworks (Co-MOFs) as electric Fenton catalysts has high catalytic activity and stability, which can avoid the generation of iron sludge and achieve the purpose of efficient degradation and removal of antibiotic organic pollutants in water. In this paper, Co-MOFs nanocrystalline materials were grown in situ on carbon fiber electrodes, and heterogeneous electric Fenton systems were constructed with the composite material as the cathode and platinum sheets as the anode. By adjusting the preparation method, the type of ligand, the ratio of ligand to metal, the calcination temperature, the system voltage, and the amount of H2O2 added, the optimal preparation conditions were explored: under the condition of hydrothermal reaction, Co-MOFs were synthesized by 1:1 coordination of terephthalic acid and cobalt salt, which were grown in situ on a carbon fiber substrate, and calcined and activated under 100°C in air. The optimal reaction conditions are: the voltage was -0.8 V and the H2O2 addition was 60 μL, and the degradation effect of tetracycline was 91% in 90 min.

Key words: Fenton reaction;Electrocatalysis;Metal organic framework compounds, Antibiotics 

中图分类号: 

TrendMD: