高等学校化学学报

• 研究论文 • 上一篇    下一篇

二氧化钛表面浸润性调控增强光催化氧化反应性能

卢净宇1,刘志萍1,盛夏1,封心建1,2   

  1. 1.苏州大学材料与化学化工学部,仿生界面材料科学全国重点实验室 2.中国科学技术大学,苏州高等研究院
  • 收稿日期:2024-12-31 修回日期:2025-02-13 出版日期:2025-02-20 发布日期:2025-02-20
  • 通讯作者: 封心建 E-mail:xjfeng@suda.edu.cn
  • 基金资助:
    国家自然科学基金(批准号:21988102,51772198,21975171)和江苏高校优势学科建设工程(PAPD)资助

Surface wettability regulation of titanium dioxide for enhanced photocatalytic oxidation reaction performance

LU Jingyu1, LIU Zhiping1, SHENG Xia1, FENG Xinjian1,2   

  1. 1. State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 2. Suzhou Institute for Advanced Research, University of Science and Technology of China
  • Received:2024-12-31 Revised:2025-02-13 Online:2025-02-20 Published:2025-02-20
  • Contact: Xinjian Feng E-mail:xjfeng@suda.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(Nos.21988102, 51772198, 21975171) and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD), China

摘要: 反应界面微环境是影响光催化性能的重要因素。本研究通过调控光催化剂的表面浸润性,改变反应界面微环境,构筑了高效的三相界面光催化体系,并用于光催化氧化有机物反应中。论文用二氧化钛(TiO2)纳米颗粒作为模型光催化剂,通过在其表面接枝聚二甲基硅氧烷(PDMS)提高疏水性。实验结果表明,疏水PDMS层使得光催化体系在反应界面处形成了气-液-固三相共存的微环境,极大的增加了界面氧气(O2)浓度;同时,疏水PDMS层大幅提高了有机分子在催化剂表面的吸附能力。二者的协同作用促进了光催化氧化反应中超氧自由基(?O2-)和羟基自由基(?OH)的生成,进而提高了光催化氧化反应效率。本论文为未来设计构筑高效的催化反应体系提供了新的思路。

关键词: 浸润性调控, 反应界面微环境, 三相界面, 光催化, 二氧化钛

Abstract: The reaction interface microenvironment is an important factor that affects photocatalytic reaction performance. In this study we construct a highly efficient triphase interface reaction system by regulating the surface wettability for photocatalytic oxidation of organic compounds. Titanium dioxide (TiO2) nanoparticle is used as a model photocatalyst, polydimethylsiloxane (PDMS) is grafted onto the surface to enhance the hydrophobicity. Experimental results show that the presence of hydrophobic a PDMS layer enables the formation of a gas-liquid-solid triphase coexisting microenvironment at the reaction interface, which increases the interfacial oxygen (O2) concentration. Meanwhile, the hydrophobic surface layer enhances the adsorption capability of organic molecule. Such synergistic effect promotes the generation of superoxide radicals (?O2- ) and hydroxyl radicals (?OH) and enhances the photocatalytic oxidation reaction. This work provides a novel approach to design and construction of efficient catalytic reaction systems.

Key words: Wettability, Reaction interface microenvironment, Triphase interface; Photocatalysis, TiO2

中图分类号: 

TrendMD: