高等学校化学学报

• 研究论文 • 上一篇    下一篇

功能化MIL-101(Cr)修饰QCM气相传感器的组装与甲酸识别#br#

陈雅婷1,王鹏1,郭宝盈1,付思芸1,刘婉宁1,陈舒仪1,施羽1,蔡松亮1,郑盛润1,范军1,2,章伟光1   

  1. 1. 华南师范大学化学学院,广东省药监局手性药物制药过程控制与质量评价重点实验室,广州市生物医药分析化学重点实验室,广州 510006;
    2. 广东朗斯姆生化技术有限公司,清远 511540
  • 收稿日期:2024-01-19 修回日期:2024-03-23 出版日期:2024-04-07 发布日期:2024-04-07
  • 通讯作者: 范军 E-mail:fanj@scnu.edu.cn
  • 基金资助:
    国家自然科学基金(批准号:92356303, 22073032)、广东省自然科学基金(批准号:2021A1515010211)、广东省科技创新战略专项资金(攀登计划专项资金批准号:pdjh2022a0127)和清远市科技计划项目(批准号:2023KJJ013)资助.

Assembly of Functionalized MIL-101-loaded Quartz Crystal Microbalance Gas Sensors for Formic Acid Detection

CHEN Yating1, WANG Peng1, GUO Baoying1, LIU Wanning1, CHEN Shuyi1, SHI Yu1, CAI Songliang1, ZHENG Shengrun1, FAN Jun1,2 and ZHANG Weiguang1   

  1. 1. School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China; 
    2. Guangdong Longsmall BioChem Technology Co. Ltd, Qingyuan 511540, China
  • Received:2024-01-19 Revised:2024-03-23 Online:2024-04-07 Published:2024-04-07
  • Contact: Fan Jun E-mail:fanj@scnu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (Nos. 92356303, 22073032), Natural Science Foundation of Guangdong Province (No. 2021A1515010211), Science and Technology Innovation Strategy Project of Guangdong Province (Climbing Plan Special Fund, No. pdjh2022a0127), and Science and Technology Project of Qingyuan (No. 2023KJJ013).

摘要: 挥发性有机化合物(VOCs)是一类主要的大气污染物,对人体健康和环境都可能造成危害,发展快速、灵敏的检测VOCs技术具有积极意义. 在本研究中,分别以乙二胺(ED)和乙醇胺(EA)修饰MIL-101(Cr)得到了MIL-101(Cr)-ED和MIL-101(Cr)-EA,再采用滴涂法得到了三种负载MIL-101(Cr)材料的石英晶体微天平(QCM)气相传感器,研究其对甲醇、乙醇、异丙醇、丙酮、环己烷、二乙胺、甲酸、甲醛、氨气和乙酸的传感性能. 结果表明,与MIL-101(Cr)传感器相比,负载MIL-101(Cr)-ED和MIL-101(Cr)-EA的QCM传感器对甲酸的吸附性能显著提高,在甲酸浓度为350 ppm的条件下,传感器的振荡频率分别下降375.6 Hz和232.1 Hz. 在甲酸浓度5~350 ppm范围内,负载MIL-101(Cr)-ED传感器对甲酸响应的灵敏度为0.95 Hz?ppm-1,检测限为0.95 ppm,表现出线性良好、灵敏度高、检测限低和重复性好的特点. 这表明发展新型气相QCM传感器在VOCs实时检测方面具有良好的应用前景.

关键词: 石英晶体微天平(QCM), MIL-101(Cr), 功能化, 气相传感器, 甲酸识别

Abstract: Volatile organic compounds (VOCs) are considered as one of the major components in atmospheric pollutants, and pose serious hazards to both human health and the environment. It is urgent to develop new high-efficient detection techniques for VOCs. In this work, ethylenediamine (ED) and ethanolamine (EA) were grafted into MIL-101(Cr) to obtain ED- and EA-derived MIL-101(Cr) materials (labeled as MIL-101(Cr)-ED and MIL-101(Cr)-EA), respectively. Then, these three MIL-101(Cr) materials were loaded on the surface of quartz crystal through dip coating to assemble three kinds of MIL-101(Cr)-modified quartz crystal microbalance (QCM) gas sensor, respectively. Moreover, the sensing and recognition performances of these QCM sensors toward methanol, ethanol, 2-propanol, acetone, cyclohexane, diethylamine, formic acid, formaldehyde, ammonia, and acetic acid have been studied in detail. As indicated, MIL-101(Cr)-ED- and MIL-101(Cr)-EA-loaded QCM sensors showed better sensing performance for formic acid in comparison with the original MIL-101(Cr)-based sensor, and the oscillation frequency of these two sensors decreased by 375.6 Hz and 232.1 Hz when the concentration of formic acid was 350 ppm, respectively. ?f value was linearly related to the concentration of formic acid in the range from 5 ppm to 350 ppm. In addition, the sensitivity of MIL-101(Cr)-ED-loaded gas sensor was estimated to be 0.95 Hz·ppm-1 and the limit of detection was 0.95 ppm. As a result, this MIL-101(Cr)-modified QCM gas sensor demonstrated high sensitivity, low detection limit, and good repeatability. In brief, this research would provide some useful information for developing new QCM gas sensors in real-time VOCs detection. As a result, this MIL-101(Cr)-modified QCM gas sensor demonstrated high sensitivity, low detection limit, and good repeatability. In brief, this research would provide some useful information for developing new QCM gas sensors in real-time VOCs detection.

Key words: Quartz crystal microbalance (QCM), MIL-101(Cr), Functionalization, Gas sensor, Formic acid detection

中图分类号: 

TrendMD: