高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (2): 365-374.doi: 10.7503/cjcu20190361

• 高分子化学 • 上一篇    

高支化梳型聚芳醚砜/咪唑鎓盐功能化氧化石墨烯阴离子交换复合膜的制备与性能

方明亮,刘东,胡美韶,王雷()   

  1. 深圳大学材料学院, 深圳市高分子材料及制造技术重点实验室, 深圳 518060
  • 收稿日期:2019-06-27 出版日期:2020-02-10 发布日期:2019-12-23
  • 通讯作者: 王雷 E-mail:wl@szu.edu.cn
  • 基金资助:
    国家自然科学基金(51773118);广东省自然科学基金(2018040);广东省自然科学基金(2016003);深圳市科技研究基金资助(JCYJ20170302150014024);深圳市科技研究基金资助(JCYJ20170818093417096)

Synthesis and Properties of Highly Branched Comb-shaped Poly(aryl ether sulfone)s/imidazolium-functionalized Graphene Oxide Anion Exchange Composite Membranes

FANG Mingliang,LIU Dong,HU Meishao,WANG Lei()   

  1. School of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Polymer Materials & Manufacturing Technology, Shenzhen 518060, China
  • Received:2019-06-27 Online:2020-02-10 Published:2019-12-23
  • Contact: Lei WANG E-mail:wl@szu.edu.cn
  • Supported by:
    ? Supported by the National Natural Science Foundation of China(51773118);the Natural Science Foundation of Guangdong Province, China(2018040);the Natural Science Foundation of Guangdong Province, China(2016003);Shenzhen Sci & Tech Research Grant(JCYJ20170302150014024);Shenzhen Sci & Tech Research Grant(JCYJ20170818093417096)

摘要:

通过Williamson反应, 在羟基化氧化石墨烯(GO-OH)表面修饰1-(6-溴己基)-3-甲基咪唑溴化物(6BrIm), 合成了1-(6-溴己基)-3-甲基咪唑溴化物功能化氧化石墨烯(6BrIm-GO). 将6BrIm-GO引入高支化梳型聚芳醚砜(ImHBPES-8)基体中, 经物理共混、 浇铸成膜及离子交换, 制备了一系列阴离子交换纳米复合膜(ImHBPES-8/x-6BrIm-GO). 6BrIm-GO的引入, 既作为一种功能纳米填料, 又提供了更多OH -离子传输位点, 在提高ImHBPES-8膜机械强度的同时保证了离子电导率. 研究了引入6BrIm-GO的含量对ImHBPES-8膜结构与性能的影响. 研究结果表明, 引入6BrIm-GO后, ImHBPES-8膜整体性能均得到改善. 当6BrIm-GO含量为0.75%时, ImHBPES-8/0.75%-6BrIm-GO复合膜的综合性能最佳, 其拉伸强度为18.32 MPa, 与ImHBPES-8膜相比, 提高了22.9%; 80 ℃下OH -离子电导率最高达79.8 mS/cm. 将ImHBPES-8/0.75%-6BrIm-GO复合膜浸泡在60 ℃的1 mol/L KOH溶液中进行碱稳定性测试, 300 h后离子电导率保留在初始的70%以上, 远高于ImHBPES-8膜(56%), 表明ImHBPES-8/0.75%-6BrIm-GO复合膜具有良好的耐碱稳定性. ImHBPES-8/0.75%-6BrIm-GO复合膜整体性能优异, 有望应用于碱性聚电解质燃料电池中.

关键词: 高支化聚芳醚砜, 咪唑鎓盐, 功能化氧化石墨烯, 共混, 阴离子交换复合膜

Abstract:

1-(6-Bromohexyl)-3-methylimidazolium bromide-functionalized graphene oxide(6BrIm-GO) was synthesized with hydroxylated graphene oxide(GO-OH) and 1-(6-bromohexyl)-3-methylimidazolium bromide(6BrIm)by the Williamson reaction. After introducing 6BrIm-GO into the matrix of highly branched comb-shaped poly(aryl ether sulfone)s(ImHBPES-8), a set of anion exchange nano-composite membranes(ImHBPES-8/x-6BrIm-GO) were prepared via physical blending, solution casting and ion exchange. 6BrIm-GO, which acted as a kind of unique functional nano-filler within membranes, provided more sites for hydroxide ion transport. It was the introduction of 6BrIm-GO to ImHBPES-8 that enhanced not only mechanical strength but also hydroxide conductivity for the ImHBPES-8 membrane. The structure-property relationships of the as-prepared membranes were investigated in detail by regulating the content of 6BrIm-GO. This results revealed that all of the ImHBPES-8/x-6BrIm-GO composite membranes showed better overall properties than the ImHBPES-8 membrane after introducing 6BrIm-GO into ImHBPES-8. Among of these membranes, the ImHBPES/0.75%-6BrIm-GO composite membrane exhibited the most outstanding features. Tensile strength of the membrane was 18.32 MPa, which was 22.9% higher than the ImHBPES-8 membrane. Hydroxide conductivity of the ImHBPES/0.75%-6BrIm-GO composite membrane in this work reached a maximum value of 79.8 mS/cm at 80 ℃. Moreover, this membrane remained approximately 70% of its initial hydroxide conductivity, which was far over the ImHBPES-8 membranes(56%), after immersing the membrane into a 1 mol/L aqueous KOH solution at 60 ℃ for 300 h, indicating that the ImHBPES/0.75%-6BrIm-GO composite membrane possessed an excellent alkaline resistance stability. In summary, these results suggested that the ImHBPES/0.75%-6BrIm-GO composite membrane with remarkable overall performance had a great potential in alkaline polyelectrolyte fuel cells.

Key words: Highly branched poly(aryl ether sulfone)s, Imidazolium, Functionalized graphene oxide, Blending, Anion exchange composite membrane

中图分类号: