高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (11): 20220448.doi: 10.7503/cjcu20220448
收稿日期:
2022-06-28
出版日期:
2022-11-10
发布日期:
2022-08-30
通讯作者:
赵英杰,吴雨辰
E-mail:zhaoyingjie5@zzu.edu.cn;wuyuchen@iccas.ac.cn
基金资助:
YUAN Meng1,2, ZHAO Yingjie3(), WU Yuchen1(
), JIANG Lei1
Received:
2022-06-28
Online:
2022-11-10
Published:
2022-08-30
Contact:
ZHAO Yingjie,WU Yuchen
E-mail:zhaoyingjie5@zzu.edu.cn;wuyuchen@iccas.ac.cn
Supported by:
摘要:
钙钛矿材料优异的光电性能使其在高集成、 高性能、 多功能光电探测领域具有广泛的应用前景. 近年来, 科研人员致力于钙钛矿阵列化探测器的研究, 并取得了一系列重要的成果. 本文重点评述了钙钛矿材料的阵列化及其多功能探测器的制备和应用, 介绍了钙钛矿材料的结构分类、 阵列化集成方法及光电探测器的基本器件类型和性能指标, 并进一步阐述了基于钙钛矿一维阵列的高性能光电探测器及其多功能探测器的相关应用研究进展. 最后, 对该研究领域未来的发展方向进行了总结和展望.
中图分类号:
TrendMD:
袁萌, 赵英杰, 吴雨辰, 江雷. 钙钛矿阵列化组装及其多功能探测器的应用. 高等学校化学学报, 2022, 43(11): 20220448.
YUAN Meng, ZHAO Yingjie, WU Yuchen, JIANG Lei. Assembly of Perovskite Arrays and Multifunctional Detector Applications. Chem. J. Chinese Universities, 2022, 43(11): 20220448.
Fig.2 Integration method of perovskite array(A) Preparation schematic of the CsPbBr3 microwire arrays with the assist of antisolvent; (B) scanning electron microscopy(SEM) image and (C) high-resolution transmission electron microscopy(HRTEM) image of CsPbBr3 microwire showing the [010] zone axis[44]; (D) schematic illustration of the fabrication procedures for CsPbBr3 QDs devices by inkjet printing; (E) photography of CsPbBr3 QDs based X-ray detector arrays on a 4 in. wafer; (F) height profile of the printed CsPbBr3 QDs film; (G) high-resolution TEM image and selected-area electron diffraction(SAED) pattern of CsPbBr3 QDs[46]; (H) schematic illustration of the solution-based growth method of patterned MAPbI3-x Cl x film on a surface-functionalized polyethylene terephthalate(PET) substrate; (I) SEM image of patterned MAPbI3-x Cl x film and magnified SEM images showing the compact surface; (J) photography of large-scale MAPbI3-x Cl x film array on PET substrate[49]; (K) schematic illustration of the 2D-perovskite nanowire arrays fabrication process by capillary-bridge method; (L) SEM image of 2D perovskite nanowire arrays; (M) grazing incidence wide-angle X-ray scattering(GIWAXS) pattern of 2D perovskite nanowires[53].(A)—(C) Copyright 2019, John Wiley and Sons; (D)—(G) Copyright 2019, John Wiley and Sons; (H)—(J) Copyright 2019, John Wiley and Sons; (K)—(M) Copyright 2020, John Wiley and Sons.
Fig.4 High?performance photodetectors(A) Typical logarithmic I?V curves of α-CsPbI3 nanowire arrays under the dark current and different irradiances, inset is the schematic illustration of device; (B) photocurrent and photoresponsivity vs. different irradiances at a fixed wavelength[66]; (C) photographs of the FAPbI3 nanowire arrays with different PEA+ contents(2%, 10%, 18%, molar fraction)[70]; (D) schematic illustration of a photodetector; (E) illumination power dependent photocurrents and responsivities of 1D single-crystal MAPbBr3 arrays; (F) Fluorescence micrographs of 1D MAPbBr3-x Cl x and MAPbI3-y Br y (x, y=0, 1, 1.5, 2, 3) single-crystal arrays[72]; (G) schematic of the MAPbI3 nanowire array photodetector; (H) irradiance-dependent photocurrent at a bias voltage of 5 V[73]; (I) device structure of the aligned MAPbI3 microwire array-based photodetector; (J) photocurrent vs. light intensity of the device under 550 nm light illumination[74]; (K) scheme of carrier dynamics in the photodetector of single-crystalline (101)-oriented 2D perovskite; (L) frequency-dependent noise current at a voltage bias of 5 V; (M) statistics of detectivities of n=2—5 nanowires under modulation frequencies of 10 and 30 Hz[87]; (N) schematic illustration of design and fabrication of single-crystalline nanowire photodetectors with pure (101) orientation and sulfur-sulfur(S-S) interaction; (O) frequency-modulated photocurrents of n=3 perovskite nanowire arrays under 530 nm LED light irradiation; (P) irradiation-dependent responsivity of n=1—3 layered-perovskite single-crystalline nanowire arrays[88]. (A, B) Copyright 2019, John Wiley and Sons; (C) Copyright 2020, John Wiley and Sons; (D—F) Copyright 2018, John Wiley and Sons; (G, H) Copyright 2017, American Chemical Society; (I, J) Copyright 2016, John Wiley and Sons; (K—M) Copyright 2018, Springer Nature; (N—P) Copyright 2022, American Chemical Society.
Fig.5 Multifunctional photodetectors(A) Schematic illustration of polarization-sensitive photodetection on 1D CsPbBr3 perovskite arrays; (B) polarization dependence of photocurrent[93]; (C) angle-dependent photocurrents of the (R?α-PEA)2PbI4 perovskite nanowire device at different polarization angles under a fixed 505 nm LED illumination with a power of 119.5 mW/cm2; (D) schematic illustration of multifunctional photodetectors, integrating linearly polarized and circularly polarized light detection and achieving a high-efficiency Stokes-parameter photodetector; (E) wavelength-dependent responsivities of chiral-perovskite nanowire devices under different CPL illuminations with the power of 1.47×10-4 mW/cm2 at 10 Hz; (F) images results of the five-pointed star for the (R?α-PEA)2PbI4 perovskite nanowire device under RCP illumination[94]; (G) crystal structures of (R- and S-C5H14N)PbI3[95]; (H) schematic structures of chiral double perovskite crystals; (I) statistics of detectivities and responsivities of (R/S/rac-β-MPA)4AgBiI8 microwire devices under unpolarized-520 nm illumination with the power of 2.3×10-3 mW/cm2[100]; (J) Poincare?-sphere representation for the polarization states of light with various Stokes parameters; (K) experimental measurement and theoretical derivation value under differently polarized lights[94].(A, B) Copyright 2017, John Wiley and Sons; (C—F, J, K) Copyright 2021, American Chemical Society; (G) Copyright 2022, Elsevier; (H, I) Copyright 2021, John Wiley and Sons.
Year | Material | R/(A·W?1) | 10?12D*/Jones | Polarizatin ratio, gres | LDR/dB | tr/ms | td/ms | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|
2019 | CsPbI3 | 1294 | 260 | — | — | 0.85 | 0.78 | Stable, highly sensitive | [ |
2020 | FAPbI3 | 5282 | 145 | — | — | 0.0293 | 0.0311 | Air?stable, ultrasensitive | [ |
2018 | MAPbBr3-x Cl x MAPbI3-y Br y | 3160 | — | — | — | — | — | Bandgap engineering | [ |
2017 | MAPbI3-x Br x | 12500 | 0.173 | — | 150 | — | — | High?, ultrahigh?responsivity | [ |
2016 | MAPbI3 | 13.57 | 5.25 | — | 114 | — | — | Flexible | [ |
2018 | (BA)2(MA)3Pb4I13 | 15000 | 7000 | — | — | 0.0276 | 0.0245 | Ultrasensitive | [ |
2020 | (ThMA)2(MA)2Pb3I10 | 11000 | 9100 | — | 157 | 0.0362 | 0.0315 | Ultrasensitive | [ |
2022 | (MTEA)2(MA)2Pb3I10 | 7300 | 3900 | — | 141 | 0.04 | 0.0522 | Strongly Interacted | [ |
2020 | Cs2AgBiBr6 | 1625 | — | — | — | 0.04 | 0.28 | Non?toxic | [ |
2017 | CsPbBr3 | 1377 | — | 2.6 | — | 0.0215 | 0.0234 | Polarization?sensitive | [ |
2021 | (R?α?PEA)2PbI4 | 47.1 | 12.4 | 1.6/0.15 | — | 0.267 | 0.258 | Stokes | [ |
2021 | (R?C5H14N) PbI3 | 0.026 | 0.22 | 0.23 | — | 19.0 | 19.2 | Circularly polarized | [ |
2021 | (R?β?MPA)4AgBiI8 | 0.052 | 0.39 | 0.19 | — | 11.5 | 15.6 | Lead?free | [ |
2021 | (R?MBA)2PbI4 | 0.136 | 0.039 | 1.46 | — | 267 | 270 | Full?Stokes polarimeter | [ |
Table 1 Optoelectronic performances of 1D nanowire perovskites-based photodetectors
Year | Material | R/(A·W?1) | 10?12D*/Jones | Polarizatin ratio, gres | LDR/dB | tr/ms | td/ms | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|
2019 | CsPbI3 | 1294 | 260 | — | — | 0.85 | 0.78 | Stable, highly sensitive | [ |
2020 | FAPbI3 | 5282 | 145 | — | — | 0.0293 | 0.0311 | Air?stable, ultrasensitive | [ |
2018 | MAPbBr3-x Cl x MAPbI3-y Br y | 3160 | — | — | — | — | — | Bandgap engineering | [ |
2017 | MAPbI3-x Br x | 12500 | 0.173 | — | 150 | — | — | High?, ultrahigh?responsivity | [ |
2016 | MAPbI3 | 13.57 | 5.25 | — | 114 | — | — | Flexible | [ |
2018 | (BA)2(MA)3Pb4I13 | 15000 | 7000 | — | — | 0.0276 | 0.0245 | Ultrasensitive | [ |
2020 | (ThMA)2(MA)2Pb3I10 | 11000 | 9100 | — | 157 | 0.0362 | 0.0315 | Ultrasensitive | [ |
2022 | (MTEA)2(MA)2Pb3I10 | 7300 | 3900 | — | 141 | 0.04 | 0.0522 | Strongly Interacted | [ |
2020 | Cs2AgBiBr6 | 1625 | — | — | — | 0.04 | 0.28 | Non?toxic | [ |
2017 | CsPbBr3 | 1377 | — | 2.6 | — | 0.0215 | 0.0234 | Polarization?sensitive | [ |
2021 | (R?α?PEA)2PbI4 | 47.1 | 12.4 | 1.6/0.15 | — | 0.267 | 0.258 | Stokes | [ |
2021 | (R?C5H14N) PbI3 | 0.026 | 0.22 | 0.23 | — | 19.0 | 19.2 | Circularly polarized | [ |
2021 | (R?β?MPA)4AgBiI8 | 0.052 | 0.39 | 0.19 | — | 11.5 | 15.6 | Lead?free | [ |
2021 | (R?MBA)2PbI4 | 0.136 | 0.039 | 1.46 | — | 267 | 270 | Full?Stokes polarimeter | [ |
1 | Donati S., Meas. Sci. Technol., 2001, 12(5), 653 |
2 | Konstantatos G., Sargent E. H., Nat. Nanotechnol., 2010, 5(6), 391—400 |
3 | Baeg K. J., Binda M., Natali D., Caironi M., Noh Y. Y., Adv. Mater., 2013, 25(31), 4267—4295 |
4 | Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M., Nat. Nanotechnol., 2014, 9(10), 780—793 |
5 | Jansen⁃van Vuuren R. D., Armin A., Pandey A. K., Burn P. L., Meredith P., Adv. Mater., 2016, 28(24), 4766—4802 |
6 | García de Arquer F. P., Armin A., Meredith P., Sargent E. H., Nat. Rev. Mater., 2017, 2(3), 16100 |
7 | Konstantatos G., Clifford J., Levina L., Sargent E. H., Nat. Photonics, 2007, 1(9), 531—534 |
8 | Gong X., Tong M., Xia Y., Cai W., Moon J. S., Cao Y., Yu G., Shieh C. L., Nilsson B., Heeger A. J., Science, 2009, 325(5948), 1665—1667 |
9 | Yao Y., Liang Y., Shrotriya V., Xiao S., Yu L., Yang Y., Adv. Mater., 2007, 19(22), 3979—3983 |
10 | Zhou X., Yang D., Ma D., Adv. Opt. Mater., 2015, 3(11), 1570—1576 |
11 | Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., Sargent E. H., Nature, 2006, 442(7099), 180—183 |
12 | Jin Y., Wang J., Sun B., Blakesley J. C., Greenham N. C., Nano Lett., 2008, 8(6), 1649—1653 |
13 | Sukhovatkin V., Hinds S., Brzozowski L., Sargent E. H., Science, 2009, 324(5934), 1542—1544 |
14 | Chen H. Y., Lo M. K. F., Yang G., Monbouquette H. G., Yang Y., Nat. Nanotechnol., 2008, 3(9), 543—547 |
15 | Arnold M. S., Zimmerman J. D., Renshaw C. K., Xu X., Lunt R. R., Austin C. M., Forrest S. R., Nano Lett., 2009, 9(9), 3354—3358 |
16 | Guo F., Yang B., Yuan Y., Xiao Z., Dong Q., Bi Y., Huang J., Nat. Nanotechnol., 2012, 7(12), 798—802 |
17 | Dou L., Yang Y., You J., Hong Z., Chang W. H., Li G., Yang Y., Nat. Commun., 2014, 5(1), 5404 |
18 | Saidaminov M. I., Adinolfi V., Comin R., Abdelhady A. L., Peng W., Dursun I., Yuan M., Hoogland S., Sargent E. H., Bakr O. M., Nat. Commun., 2015, 6(1), 8724 |
19 | Li F., Ma C., Wang H., Hu W., Yu W., Sheikh A. D., Wu T., Nat. Commun., 2015, 6(1), 8238 |
20 | Arai R., Yoshizawa⁃Fujita M., Takeoka Y., Rikukawa M., ACS Omega, 2017, 2(5), 2333—2336 |
21 | Zhou C., Tian Y., Wang M., Rose A., Besara T., Doyle N. K., Yuan Z., Wang J. C., Clark R., Hu Y., Siegrist T., Lin S., Ma B., Angew. Chem. Int. Ed., 2017, 56(31), 9018—9022 |
22 | Ahmed G. H., Yin J., Bose R., Sinatra L., Alarousu E., Yengel E., AlYami N. M., Saidaminov M. I., Zhang Y., Hedhili M. N., Bakr O. M., Brédas J. L., Mohammed O. F., Chem. Mater., 2017, 29(10), 4393—4400 |
23 | Cortecchia D., Dewi H. A., Yin J., Bruno A., Chen S., Baikie T., Boix P. P., Grätzel M., Mhaisalkar S., Soci C., Mathews N., Inorg. Chem., 2016, 55(3), 1044—1052 |
24 | Zhou C., Lin H., He Q., Xu L., Worku M., Chaaban M., Lee S., Shi X., Du M. H., Ma B., Mater. Sci. Eng. R Rep., 2019, 137, 38—65 |
25 | Eperon G. E., Stranks S. D., Menelaou C., Johnston M. B., Herz L. M., Snaith H. J., Energy Environ. Sci., 2014, 7(3), 982—988 |
26 | Bhalla A. S., Guo R., Roy R., Mater. Res. Innov., 2000, 4(1), 3—26 |
27 | Fang Y., Dong Q., Shao Y., Yuan Y., Huang J., Nat. Photonics, 2015, 9(10), 679—686 |
28 | Wang G., Li D., Cheng H. C., Li Y., Chen C. Y., Yin A., Zhao Z., Lin Z., Wu H., He Q., Ding M., Liu Y., Huang Y., Duan X., Sci. Adv., 2015, 1(9), e1500613 |
29 | Protesescu L., Yakunin S., Bodnarchuk M. I., Krieg F., Caputo R., Hendon C. H., Yang R. X., Walsh A., Kovalenko M. V., Nano Lett., 2015, 15(6), 3692—3696 |
30 | Zhang D., Yang Y., Bekenstein Y., Yu Y., Gibson N. A., Wong A. B., Eaton S. W., Kornienko N., Kong Q., Lai M., Alivisatos A. P., Leone S. R., Yang P., J. Am. Chem. Soc., 2016, 138(23), 7236—7239 |
31 | Pan A., He B., Fan X., Liu Z., Urban J. J., Alivisatos A. P., He L., Liu Y., ACS Nano, 2016, 10(8), 7943—7954 |
32 | Zhao Y., Xu X., You X., Sci. Rep., 2016, 6(1), 35931 |
33 | Jellicoe T. C., Richter J. M., Glass H. F. J., Tabachnyk M., Brady R., Dutton S. E., Rao A., Friend R. H., Credgington D., Greenham N. C., Böhm M. L., J. Am. Chem. Soc., 2016, 138(9), 2941—2944 |
34 | Fu Y., Zhu H., Stoumpos C. C., Ding Q., Wang J., Kanatzidis M. G., Zhu X., Jin S., ACS Nano, 2016, 10(8), 7963—7972 |
35 | Wang Y., Sun X., Shivanna R., Yang Y., Chen Z., Guo Y., Wang G. C., Wertz E., Deschler F., Cai Z., Zhou H., Lu T. M., Shi J., Nano Lett., 2016, 16(12), 7974—7981 |
36 | Chen J., Fu Y., Samad L., Dang L., Zhao Y., Shen S., Guo L., Jin S., Nano Lett., 2017, 17(1), 460—466 |
37 | Zhou H., Yuan S., Wang X., Xu T., Wang X., Li H., Zheng W., Fan P., Li Y., Sun L., Pan A., ACS Nano, 2017, 11(2), 1189—1195 |
38 | Fu Y., Zhu H., Schrader A. W., Liang D., Ding Q., Joshi P., Hwang L., Zhu X. Y., Jin S., Nano Lett., 2016, 16(2), 1000—1008 |
39 | Chen Z., Guo Y., Wertz E., Shi J., Adv. Mater., 2019, 31(1), 1803514 |
40 | Shi E., Gao Y., Finkenauer B. P., Akriti, Coffey A. H., Dou L., Chem. Soc. Rev., 2018, 47(16), 6046—6072 |
41 | Zhang F., Lu H., Tong J., Berry J. J., Beard M. C., Zhu K., Energy Environ. Sci., 2020, 13(4), 1154—1186 |
42 | Ju M. G., Dai J., Ma L., Zhou Y., Zeng X. C., J. Am. Chem. Soc., 2018, 140(33), 10456—10463 |
43 | Zhao H., Sun R., Wang Z., Fu K., Hu X., Zhang Y., Adv. Funct. Mater., 2019, 29(30), 1902262 |
44 | Yang Z., Lu J., ZhuGe M., Cheng Y., Hu J., Li F., Qiao S., Zhang Y., Hu G., Yang Q., Peng D., Liu K., Pan C., Adv. Mater., 2019, 31(18), e1900647 |
45 | Han X., Wu W., Chen H., Peng D., Qiu L., Yan P., Pan C., Adv. Funct. Mater., 2020, 31(3), 2005230 |
46 | Liu J., Shabbir B., Wang C., Wan T., Ou Q., Yu P., Tadich A., Jiao X., Chu D., Qi D., Li D., Kan R., Huang Y., Dong Y., Jasieniak J., Zhang Y., Bao Q., Adv. Mater., 2019, 31(30), 1901644 |
47 | Karunakaran S. K., Arumugam G. M., Yang W., Ge S., Khan S. N., Lin X., Yang G., J. Mater. Chem. A, 2019, 7(23), 13873—13902 |
48 | Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., Science, 1999, 283(5402), 661—663 |
49 | Wu W., Wang X., Han X., Yang Z., Gao G., Zhang Y., Hu J., Tan Y., Pan A., Pan C., Adv. Mater., 2019, 31(3), e1805913 |
50 | Li C., Li J. X., Li C. Y., Wang J., Tong X. W., Zhang Z. X., Yin Z. P., Wu D., Luo L. B., Adv. Opt. Mater., 2021, 9(15), 2100371 |
51 | Briseno A. L., Mannsfeld S. C. B., Ling M. M., Liu S., Tseng R. J., Reese C., Roberts M. E., Yang Y., Wudl F., Bao Z., Nature, 2006, 444(7121), 913—917 |
52 | Giri G., Verploegen E., Mannsfeld S. C. B., Atahan⁃Evrenk S., Kim D. H., Lee S. Y., Becerril H. A., Aspuru⁃Guzik A., Toney M. F., Bao Z., Nature, 2011, 480(7378), 504—508 |
53 | Zhao Y., Qiu Y., Gao H., Feng J., Chen G., Jiang L., Wu Y., Adv. Mater., 2020, 32(9), e1905298 |
54 | Ma C., Shi Y., Hu W., Chiu M. H., Liu Z., Bera A., Li F., Wang H., Li L. J., Wu T., Adv. Mater., 2016, 28(19), 3683—3689 |
55 | Lee Y., Kwon J., Hwang E., Ra C. H., Yoo W. J., Ahn J. H., Park J. H., Cho J. H., Adv. Mater., 2015, 27(1), 41—46 |
56 | Spina M., Lehmann M., Náfrádi B., Bernard L., Bonvin E., Gaál R., Magrez A., Forró L., Horváth E., Small, 2015, 11(37), 4824—4828 |
57 | Wang H., Kim D. H., Chem. Soc. Rev., 2017, 46(17), 5204—5236 |
58 | Liu J., Xue Y., Wang Z., Xu Z. Q., Zheng C., Weber B., Song J., Wang Y., Lu Y., Zhang Y., Bao Q., ACS Nano, 2016, 10(3), 3536—3542 |
59 | Cheng H. C., Wang G., Li D., He Q., Yin A., Liu Y., Wu H., Ding M., Huang Y., Duan X., Nano Lett., 2016, 16(1), 367—373 |
60 | Lu J., Carvalho A., Liu H., Lim S. X., Castro Neto A. H., Sow C. H., Angew. Chem. Int. Ed., 2016, 55(39), 11945—11949 |
61 | Kang D. H., Pae S. R., Shim J., Yoo G., Jeon J., Leem J. W., Yu J. S., Lee S., Shin B., Park J. H., Adv. Mater., 2016, 28(35), 7799—7806 |
62 | Xie C., Yan F., ACS Appl. Mater. Interfaces, 2017, 9(2), 1569—1576 |
63 | Chen G., Feng J., Gao H., Zhao Y., Pi Y., Jiang X., Wu Y., Jiang L., Adv. Funct. Mater., 2019, 29(13), 1808741 |
64 | Chen G., Qiu Y., Gao H., Zhao Y., Feng J., Jiang L., Wu Y., Adv. Funct. Mater., 2020, 30(14), 1908894 |
65 | Swarnkar A., Marshall A. R., Sanehira E. M., Chernomordik B. D., Moore D. T., Christians J. A., Chakrabarti T., Luther J. M., Science, 2016, 354(6308), 92—95 |
66 | Luo P., Xia W., Zhou S., Sun L., Cheng J., Xu C., Lu Y., J. Phys. Chem. Lett., 2016, 7(18), 3603—3608 |
67 | Beal R. E., Slotcavage D. J., Leijtens T., Bowring A. R., Belisle R. A., Nguyen W. H., Burkhard G. F., Hoke E. T., McGehee M. D., J. Phys. Chem. Lett., 2016, 7(5), 746—751 |
68 | Chen T., Foley B. J., Park C., Brown C. M., Harriger L. W., Lee J., Ruff J., Yoon M., Choi J. J., Lee S. H., Science Advances, 2016, 2(10), e1601650 |
69 | Fu Y., Wu T., Wang J., Zhai J., Shearer M. J., Zhao Y., Hamers R. J., Kan E., Deng K., Zhu X. Y., Jin S., Nano Lett., 2017, 17(7), 4405—4414 |
70 | Lee J. W., Dai Z., Han T. H., Choi C., Chang S. Y., Lee S. J., De Marco N., Zhao H., Sun P., Huang Y., Yang Y., Nat. Commun., 2018, 9(1), 3021 |
71 | Ning C. Z., Dou L., Yang P., Nat. Rev. Mater., 2017, 2(12), 17070 |
72 | Gao H., Feng J., Pi Y., Zhou Z., Zhang B., Wu Y., Wang X., Jiang X., Jiang L., Adv. Funct. Mater., 2018, 28(46), 1804349 |
73 | Deng W., Huang L., Xu X., Zhang X., Jin X., Lee S. T., Jie J., Nano Lett., 2017, 17(4), 2482—2489 |
74 | Deng W., Zhang X., Huang L., Xu X., Wang L., Wang J., Shang Q., Lee S. T., Jie J., Adv. Mater., 2016, 28(11), 2201—2208 |
75 | Mao L., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc., 2019, 141(3), 1171—1190 |
76 | Chen C., Gao L., Gao W., Ge C., Du X., Li Z., Yang Y., Niu G., Tang J., Nat. Commun., 2019, 10(1), 1927 |
77 | Long G., Jiang C., Sabatini R., Yang Z., Wei M., Quan L. N., Liang Q., Rasmita A., Askerka M., Walters G., Gong X., Xing J., Wen X., Quintero⁃Bermudez R., Yuan H., Xing G., Wang X. R., Song D., Voznyy O., Zhang M., Hoogland S., Gao W., Xiong Q., Sargent E. H., Nat. Photonics, 2018, 12(9), 528—533 |
78 | Gao Y., Shi E., Deng S., Shiring S. B., Snaider J. M., Liang C., Yuan B., Song R., Janke S. M., Liebman⁃Pelaez A., Yoo P., Zeller M., Boudouris B. W., Liao P., Zhu C., Blum V., Yu Y., Savoie B. M., Huang L., Dou L., Nat. Chem., 2019, 11(12), 1151—1157 |
79 | Ema K., Inomata M., Kato Y., Kunugita H., Era M., Phys. Rev. Lett., 2008, 100(25), 257401 |
80 | Li L., Shang X., Wang S., Dong N., Ji C., Chen X., Zhao S., Wang J., Sun Z., Hong M., Luo J., J. Am. Chem. Soc., 2018, 140(22), 6806—6809 |
81 | Huang P. J., Taniguchi K., Miyasaka H., J. Am. Chem. Soc., 2019, 141(37), 14520—14523 |
82 | Yuan C., Li X., Semin S., Feng Y., Rasing T., Xu J., Nano Lett., 2018, 18(9), 5411—5417 |
83 | Jana M. K., Song R., Liu H., Khanal D. R., Janke S. M., Zhao R., Liu C., Valy Vardeny Z., Blum V., Mitzi D. B., Nat. Commun., 2020, 11(1), 4699 |
84 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Asadpour R., Harutyunyan B., Neukirch A. J., Verduzco R., Crochet J. J., Tretiak S., Pedesseau L., Even J., Alam M. A., Gupta G., Lou J., Ajayan P. M., Bedzyk M. J., Kanatzidis M. G., Nature, 2016, 536(7616), 312—316 |
85 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Soe C. M. M., Yoo J., Crochet J., Tretiak S., Even J., Sadhanala A., Azzellino G., Brenes R., Ajayan P. M., Bulovic V., Stranks S. D., Friend R. H., Kanatzidis M. G., Mohite A. D., Adv. Mater., 2018, 30(6), 1704217 |
86 | Liu Y., Zhang Y., Yang Z., Ye H., Feng J., Xu Z., Zhang X., Munir R., Liu J., Zuo P., Li Q., Hu M., Meng L., Wang K., Smilgies D. M., Zhao G., Xu H., Yang Z., Amassian A., Li J., Zhao K., Liu S. F., Nat. Commun., 2018, 9(1), 5302 |
87 | Feng J., Gong C., Gao H., Wen W., Gong Y., Jiang X., Zhang B., Wu Y., Wu Y., Fu H., Jiang L., Zhang X., Nat. Electron, 2018, 1(7), 404—410 |
88 | Yuan M., Zhao Y., Feng J., Gao H., Zhao J., Jiang L., Wu Y., ACS Appl. Mater. Interfaces, 2022, 14(1), 1601—1608 |
89 | Pi Y., Zhao J., Zhao Y., Feng J., Zhang C., Gao H., Wu Y., Jiang L., Front. Chem., 2020, 8, 632 |
90 | He X., Gao W., Xie L., Li B., Zhang Q., Lei S., Robinson J. M., Hároz E. H., Doorn S. K., Wang W., Vajtai R., Ajayan P. M., Adams W. W., Hauge R. H., Kono J., Nat. Nanotechnol., 2016, 11(7), 633—638 |
91 | Wang J., Gudiksen M. S., Duan X., Cui Y., Lieber C. M., Science, 2001, 293 (5534), 1455—1457 |
92 | Fan Z. Y., Chang P. C., Lu J. G., Walter E. C., Penner R. M., Lin C. H., Lee H. P., Appl. Phys. Lett., 2004, 85(25), 6128—6130 |
93 | Feng J., Yan X., Liu Y., Gao H., Wu Y., Su B., Jiang L., Adv. Mater., 2017, 29 (16), 1605993 |
94 | Zhao Y., Qiu Y., Feng J., Zhao J., Chen G., Gao H., Zhao Y., Jiang L., Wu Y., J. Am. Chem. Soc., 2021, 143(22), 8437—8445 |
95 | Zhao Y., Li X., Feng J., Zhao J., Guo Y., Yuan M., Chen G., Gao H., Jiang L., Wu Y., Giant, 2022, 9, 100086 |
96 | Huang P. J., Taniguchi K., Miyasaka H., J. Am. Chem. Soc., 2019, 141(37), 14520—14523 |
97 | Di Nuzzo D., Cui L., Greenfield J. L., Zhao B., Friend R. H., Meskers S. C. J., ACS Nano, 2020, 14(6), 7610—7616 |
98 | Wang L., Xue Y., Cui M., Huang Y., Xu H., Qin C., Yang J., Dai H., Yuan M., Angew. Chem. Int. Ed., 2020, 59(16), 6442—6450 |
99 | Hu Y., Florio F., Chen Z., Phelan W. A., Siegler M. A., Zhou Z., Guo Y., Hawks R., Jiang J., Feng J., Zhang L., Wang B., Wang Y., Gall D., Palermo E. F., Lu Z., Sun X., Lu T. M., Zhou H., Ren Y., Wertz E., Sundararaman R., Shi J., Sci. Adv., 2020, 6(9), eaay4213 |
100 | Zhao Y., Dong M., Feng J., Zhao J., Guo Y., Fu Y., Gao H., Yang J., Jiang L.,Wu Y., Adv. Opt. Mater., 2021, 10(3), 2102227 |
101 | Rubin N. A., D’Aversa G., Chevalier P., Shi Z., Chen W. T., Capasso F., Science, 2019, 365(6448), eaax1839 |
102 | Ji C., Dey D., Peng Y., Liu X., Li L., Luo J., Angew. Chem. Int. Ed., 2020, 59(43), 18933—18937 |
103 | Arbabi E., Kamali S. M., Arbabi A., Faraon A., ACS Photonics, 2018, 5(8), 3132—3140 |
104 | Partanen H., Friberg A. T., Setälä T., Turunen J., Photon. Res., 2019, 7(6), 669—677 |
105 | Shahriar M. S., Shen J. T., Tripathi R., Kleinschmit M., Nee T. W., Nee S. M. F., Opt. Lett., 2004, 29(3), 298—300 |
106 | Ma J., Fang C., Liang L., Wang H., Li D., Small, 2021, 17(47), e2103855 |
[1] | 贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157. |
[2] | 高中楠, 郭丽红, 赵东越, 李新刚. A位缺陷对La-Sr-Co-O钙钛矿结构和催化氧化性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2869. |
[3] | 李艳艳, 段林瑞, 罗景山. 水分辅助对无机钙钛矿CsPbI3薄膜结晶的影响[J]. 高等学校化学学报, 2021, 42(6): 1785. |
[4] | 岳胜利, 武光宝, 李星, 李康, 黄高胜, 唐翌, 周惠琼. 准二维钙钛矿太阳能电池的研究进展[J]. 高等学校化学学报, 2021, 42(6): 1648. |
[5] | 李义山, 郭亮, 彭思凡, 张庆茂, 张瑜皓, 徐诗淇. 钴掺杂锰酸镧光催化剂的第一性原理与可见光响应光催化性能研究[J]. 高等学校化学学报, 2021, 42(6): 1881. |
[6] | 王坤华, 姚纪松, 杨俊楠, 宋永慧, 刘雨莹, 姚宏斌. 金属卤化物钙钛矿纳米晶高效发光二极管的制备与器件性能优化[J]. 高等学校化学学报, 2021, 42(5): 1464. |
[7] | 董璐铭, 苏衍跃, 王春征, 乔亚飞, 陈雅君, 马海云. 微纳米钙钛矿型羟基锡酸钙的合成及对环氧树脂的阻燃性能[J]. 高等学校化学学报, 2021, 42(3): 937. |
[8] | 刘瑶, 邓正涛. 反溶剂法快速合成高效发光二维锡卤钙钛矿材料[J]. 高等学校化学学报, 2021, 42(12): 3774. |
[9] | 王婷婷, 雷宇涵, 林宇娟, 黄加玲, 刘翠娥, 郑凤英, 李顺兴. 脂质体封端CsPbX3(X=Cl,Br,I)纳米晶体的制备及在发光二极管中的应用[J]. 高等学校化学学报, 2020, 41(8): 1896. |
[10] | 成荣敏,徐虹,单瑞平,詹从红. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6): 1345. |
[11] | 贺进禄, 龙闰, 方维海. 非绝热分子动力学模拟A位阳离子对钙钛矿热载流子弛豫的影响[J]. 高等学校化学学报, 2020, 41(3): 439. |
[12] | 韩洪晶,葛芹,陈彦广,王海英,赵宏志,王怡真,张亚男,邓冀童,宋华,张梅. Ca1-xPrxFeO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2020, 41(2): 331. |
[13] | 姜叶芳, 董茹, 蔡雪刁, 冯江山, 刘治科, 刘生忠. 两亲性季铵盐对钙钛矿太阳能电池效率和稳定性的影响[J]. 高等学校化学学报, 2019, 40(8): 1697. |
[14] | 嵇天浩, 田颜清. 卤化钙钛矿型纳米晶的光学性能及应用研究进展[J]. 高等学校化学学报, 2018, 39(6): 1113. |
[15] | 刘国震, 叶加久, 侯昭升, 陈双宏, 胡林华, 潘旭, 戴松元. 裂纹缺陷对钙钛矿太阳电池性能的影响[J]. 高等学校化学学报, 2018, 39(3): 545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||