高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1661-1669.doi: 10.7503/cjcu20200057
收稿日期:
2020-02-05
出版日期:
2020-07-10
发布日期:
2020-04-08
通讯作者:
谢海明
E-mail:xiehm136@nenu.edu.cn
基金资助:
WU Tong,CONG Lina,SUN Liqun,XIE Haiming*()
Received:
2020-02-05
Online:
2020-07-10
Published:
2020-04-08
Contact:
Haiming XIE
E-mail:xiehm136@nenu.edu.cn
Supported by:
摘要:
采用两步溶液法合成了一种具有高度氧缺位的黑色介孔二氧化钛, 并将其涂覆在隔膜表面作为锂硫电池复合隔膜, 研究了其在锂硫电池中的电化学性能. 结果表明, 氧缺位的黑色介孔二氧化钛材料不仅展现出良好的导电性, 还能加强对多硫化物的物理和化学吸附能力, 从而显著提高锂硫电池的放电比容量(0.1C倍率下首次放电比容量为1257 mA·h/g)和循环性能(循环100次后放电比容量为821 mA·h/g).
中图分类号:
吴桐, 丛丽娜, 孙立群, 谢海明. 氧缺位结构介孔二氧化钛/聚乙烯复合隔膜在锂硫电池中的应用[J]. 高等学校化学学报, 2020, 41(7): 1661-1669.
WU Tong, CONG Lina, SUN Liqun, XIE Haiming. Application of Porous Black Titanium Dioxide with Oxygen Vacancy/Polyethylene as a Composite Separator for Lithium Sulfur Batteries†[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1661-1669.
Fig.1 XRD patterns(A) and Raman spectra(B) of w-TiO2(a) and b-TiO2(b), N2 adsorption-desorption isotherm(C) and pore size distribution(D) of b-TiO2, XPS spectra at Ti2p of w-TiO2(a) and b-TiO2(b)(E) and deconvoluted Ti2p of b-TiO2 composites(F)
Fig.5 Initial charge-discharge curves of Li-S batteries with unmodified separator and b-TiO2 modified separator at 0.1C(A), charge-discharge curves of the Li-S batteries with unmodified separator(B) and b-TiO2 modified separator(C) at different cycles and rate performance of Li-S batteries with unmodified separator and b-TiO2 modified separator at 0.1C, 0.2C, 0.5C, 1C and 2C(D)
Fig.7 Nyquist plots of the cell with unmodified separator(A) and with b-TiO2 modified separator(B) after different cycles at 0.1C and equivalent circuit of the Nyquist plots of the cells before cycle(circuit 1) and after different cycles(circuit 2)(C) R0 is the ohmic resistance of the cell including electrolyte and electrode. Rct is associated to the charge-transfer. RSEI is the resistance associated to the solid-electrolyte interface. CPEct is the constant phase element of the charge-transfer. CPESEI is theconstant phase element associated to the solid-electrolyte interface.
Cycle number | Unmodified separator | b-TiO2 Modified separator | ||||
---|---|---|---|---|---|---|
R0/Ω | Rct/Ω | RSEI/Ω | R0/Ω | Rct/Ω | RSEI/Ω | |
0 | 0.10 | 22.9 | — | 0.11 | 20.1 | — |
5 | 0.09 | 33.1 | 14.3 | 0.15 | 21.7 | 10.4 |
25 | 0.11 | 53.8 | 19.7 | 0.09 | 24.3 | 26.3 |
100 | 0.10 | 85.9 | 28.9 | 0.10 | 16.7 | 25.8 |
Table 1 Fitting parameters of the equivalent circuit[Fig.7(C)] to reproduce the Nyquist plots of the cell without and with b-TiO2 modified separator after different cycles*
Cycle number | Unmodified separator | b-TiO2 Modified separator | ||||
---|---|---|---|---|---|---|
R0/Ω | Rct/Ω | RSEI/Ω | R0/Ω | Rct/Ω | RSEI/Ω | |
0 | 0.10 | 22.9 | — | 0.11 | 20.1 | — |
5 | 0.09 | 33.1 | 14.3 | 0.15 | 21.7 | 10.4 |
25 | 0.11 | 53.8 | 19.7 | 0.09 | 24.3 | 26.3 |
100 | 0.10 | 85.9 | 28.9 | 0.10 | 16.7 | 25.8 |
[1] |
Stein A., Nat. Nanotechnol., 2011, 6, 262—263
URL pmid: 21546897 |
[2] |
Cheng F. Y., Liang J., Tao Z. L., Chen J., Adv. Mater., 2011, 23, 1695
URL pmid: 21394791 |
[3] | Goodenough J. B., Kim Y., Chem. Mater., 2010, 22, 587—603 |
[4] |
Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11, 19—29
URL pmid: 22169914 |
[5] | Zeng S. B., Li L. G., Xie L. H., Zhao D. K., Zhou N., Wang N., Chen S. W., Carbon, 2017, 122, 106—113 |
[6] |
Zheng J., Tian J., Wu D., Gu M., Xu W., Wang C., Gao F., Engelhard M. H., Zhang J. G., Liu J., Xiao J., Nano Lett., 2014, 14(5), 2345—2352
URL pmid: 24702610 |
[7] |
Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8, 500—506
URL pmid: 19448613 |
[8] |
Wu H. W., Huang Y., Zhang W. C., Sun X., Yang Y. W, Wang L., Zong M., J. Alloys Compd., 2017, 708(25), 743—750
doi: 10.1016/j.jallcom.2017.03.047 URL |
[9] | Xu H., Deng Y., Shi Z. C., Qian Y., Meng Y., Chen G., J. Mater. Chem. A, 2013, 1, 15142—15149 |
[10] | Liu J., Wang C. W., Liu B., Ke X., Liu L. Y., Shi Z. C., Guo Z. P., Mater. Lett., 2017, 195, 236—239 |
[11] | Liu J., Liu B., Wang C. W., Huang Z. X., Hu L. C., Ke X., Liu L. Y., Shi Z. C., Guo Z. P., J. Alloys Compd., 2017, 718, 373—378 |
[12] | Li X., Chen L., Ma X. T., Zhang D., Xu S. D., Zhou X. X., Duan D. H., Liu S. B., Chem. J. Chinese Universities, 2019, 40(9), 1972—1978 |
( 李新, 陈良, 马晓涛, 张鼎, 徐守冬, 周娴娴, 段东红, 刘世斌. 高等学校化学学报, 2019, 40(9), 1972—1978) | |
[13] | Dong Y., Ben T., Chem. Res. Chinese Universities, 2019, 35(4), 654—661 |
[14] | Yuan L. X., Feng J. K., Ai X. P., Cao Y. L., Chen S. L., Yang H. X., Electrochem. Commun., 2006, 8(4), 610—614 |
[15] |
Zhong Y. C., Chen Y. M., Cheng Y. F., Fan Q. L., Zhao H. J., Shao H. Y., Lai Y. Q., Shi Z. C., Ke X., Guo Z. P., ACS Appl. Mater. Interfaces, 2019, 11(41), 37726—37731
URL pmid: 31549805 |
[16] | Chen Y. M., Ke X., Cheng Y. F., Fan M., Wu W. L., Huang X. Y., Liang Y. H., Zhong Y. C., Ao Z. M., Lai Y. Q., Wang G. X., Shi Z. C., Energy Storage Mater., 2020, 26, 56—64 |
[17] | Cheng Y. F., Ke X., Chen Y. M., Huang X. Y., Shi Z. C., Guo Z. P., Nano Energy, 2019, 63, 103854 |
[18] | Ke X., Liang Y. H., Ou L. H., Liu H. D., Chen Y. M., Wu W. L., Cheng Y. F., Guo Z. P., Lai Y. Q., Liu P., Shi Z. C., Energy Storage Mater., 2019, 23, 547—555 |
[19] |
Ke X., Cheng Y. F., Liu J., Liu L. Y., Wang N. G., Liu J. P., Zhi C. Y., Shi Z. C., Guo Z. P., ACS Appl. Mater. Interfaces, 2018, 10(16), 13552—13561
doi: 10.1021/acsami.8b01978 URL pmid: 29600841 |
[20] | Shin J. H., Cairns E. J., J. Electrochem. Soc., 2008, 155, A368—A373 |
[21] | Ryu H. S., Ahn H. J., Kim K. W., Ahn J. H., Cho K. K., Nam T. H., Kim J. U., Cho G. B., J. Power Sources, 2006, 163, 201—206 |
[22] | Jeddi K., Sarikhani K., Qazvini N. T., Chen P., J. Power Sources, 2014, 245, 656—662 |
[23] | Yang Y. B., Xu H., Wang S. X., Deng Y. F., Qin X. Y., Qin X. S., Chen G. H., Electrochim. Acta, 2019, 297, 641—649 |
[24] | Guan Y. B., Li W. L., Xie X. Y., Qu W., Shen J. R., Fu K., Guo C. J., Zhou S. Q., Fan H. J., Chu Y. J., Chen R. J., Chem. J. Chinese Universities, 2019, 40(3), 536—541 |
( 官亦标, 李万隆, 谢潇怡, 曲薇, 沈进冉, 傅凯, 郭翠静, 周淑琴, 范红家, 褚永金, 陈人杰. 高等学校化学学报, 2019, 40(3), 536—541) | |
[25] |
Chung S. H., Manthiram A., Adv. Mater., 2014, 26(43), 7352—7357
URL pmid: 25219844 |
[26] | Liu S. K., Li Y. J., Hong X. B., Xu J., Zheng C. M., Xie K., Electrochim. Acta, 2016, 188, 516—522 |
[27] | Yao H. B., Yan K., Li W. Y., Zheng G. Y., Kong D. S., Seh Z. W., Narasimhan V. K., Liang Z., Cui Y., Energy Environ. Sci., 2014, 7, 3381—3390 |
[28] | Chung S. H., Manthiram A., Chem. Commun., 2014, 50(32), 4184—4187 |
[29] |
Huang J. Q., Sun Y. Z., Wang Y. F., Zhang Q., Acta Chim. Sinica, 2017, 75(2), 173—188
doi: 10.6023/A16080454 URL |
( 黄佳琦, 孙滢智, 王云飞, 张强. 化学学报, 2017, 75(2), 173—188)
doi: 10.6023/A16080454 URL |
|
[30] |
Singhal R., Chung S. H., Manthiram A., Kalra V., J. Mater. Chem. A, 2015, 3(8), 4530—4538
doi: 10.1039/C4TA06511E URL |
[31] |
Kim H. M., Hwang J. Y., Manthiram A., Sun Y. K., ACS Appl. Mater. Interfaces, 2016, 8(1), 983—987
doi: 10.1021/acsami.5b10812 URL |
[32] |
Lin D. C., Liu Y. Y., Liang Z., Lee H. W., Sun J., Wang H. T., Yan K., Xie J., Cui Y., Nat. Nanotechnol., 2016, 11, 626—632
URL pmid: 26999479 |
[33] |
Chung S. H., Manthiram A., J. Phys. Chem. Lett., 2014, 5(11), 1978—1983
URL pmid: 26273884 |
[34] |
Rehman S., Guo S. J., Hou Y. L., Adv. Mater., 2016, 28(16), 3167—3172
URL pmid: 26895229 |
[35] |
Zhou G. M., Li L., Wang D. W., Shan X. Y., Pei S. F., Li F., Cheng H. M., Adv. Mater., 2015, 27(4), 641—647
URL pmid: 25377991 |
[36] |
Peng H. J., Huang J. Q., Zhao M. Q., Zhang Q., Cheng X. B., Liu X. Y., Qian W. Z., Wei F., Adv. Funct. Mater., 2014, 24, 2772—2781
doi: 10.1002/adfm.v24.19 URL |
[37] |
Chung S. H., Manthiram A., Adv. Funct. Mater., 2015, 24(33), 5299—5306
doi: 10.1002/adfm.v24.33 URL |
[38] |
Chung S. H., Manthiram A., J. Phys. Chem. Lett., 2014, 5(11), 1978—1983
URL pmid: 26273884 |
[39] |
Huang J. Q., Zhuang T. Z., Zhang Q., Peng H. J., Chen C. M., Wei F., ACS Nano, 2015, 9(3), 3002—3011
URL pmid: 25682962 |
[40] |
Yang Z. G., Choi D., Kerisit S., Rosso K. M., Wang D. H., Zhang J., Graff G., Liu J., J. Power Sources, 2009, 192(2), 588—598
doi: 10.1016/j.jpowsour.2009.02.038 URL |
[41] |
Evers S., Yim T., Nazar L. F ., J. Phys. Chem. C, 2012, 116(37), 19653—19658
doi: 10.1021/jp304380j URL |
[42] |
Pang Q., Kundu D., Cuisinier M., Nazar L. F., Nat. Commun., 2014, 5, 4759
URL pmid: 25154399 |
[43] |
Liang X., Hart C., Pang Q., Garsuch A., Weiss T., Nazar L. F., Nat. Commun., 2015, 6, 5682
doi: 10.1038/ncomms6682 URL pmid: 25562485 |
[44] |
Ji X., Evers S., Black R., Nazer L. F ., Nat. Commun, 2011, 2, 325—329
URL pmid: 21610728 |
[45] |
Suriyakumar S., Stephan A. M., Angulakshmi N., Hassan M. H., Alkordi M. H., J. Mater. Chem. A, 2018, 6, 14623—14632
doi: 10.1039/C8TA02259C URL |
[46] | Jedsukontorn T., Ueno T., Saito N., Hunsom M., J. Alloy Compd., 2018, 726, 188—199 |
[47] |
Tao X. Y., Wang J. G., Ying Z. G., Cai Q. X., Zheng G. Y., Gan Y. P., Huang H., Xia Y., Liang C., Zhang W. K., Cui Y., Nano Lett., 2014, 14(9), 5288—5294
URL pmid: 25089648 |
[1] | 王非凡, 王松博, 姚柯奕, 张蕾, 杜威, 程鹏高, 张建平, 唐娜. 量子点自修饰TiO2p-n同质结的构建及光催化性能[J]. 高等学校化学学报, 2020, 41(7): 1615-1624. |
[2] | 王霞, 刘彦吉, 贾永锋, 吉磊, 胡全丽, 段莉梅, 刘景海. 含氮多孔纳米碳纤维的制备及对锂硫电池容量的提高[J]. 高等学校化学学报, 2020, 41(4): 829-837. |
[3] | 郑姗, 刘洋, 陈飘飘, 邢怡晨, 黄朝表. 基于PbS QDs/TiO2 NPs构建新型谷胱甘肽光电化学传感器[J]. 高等学校化学学报, 2019, 40(9): 1866-1872. |
[4] | 李新, 陈良, 马晓涛, 张鼎, 徐守冬, 周娴娴, 段东红, 刘世斌. V2O3空心球的制备及在锂硫电池中的应用[J]. 高等学校化学学报, 2019, 40(9): 1972-1978. |
[5] | 官亦标, 李万隆, 谢潇怡, 曲薇, 沈进冉, 傅凯, 郭翠静, 周淑琴, 范红家, 褚永金, 陈人杰. TiO2/CNTs复合材料涂覆隔膜的制备及在锂硫电池中的应用[J]. 高等学校化学学报, 2019, 40(3): 536-541. |
[6] | 惠龙飞, 李建国, 龚婷, 孙道安, 吕剑, 胡申林, 冯昊. 高长径比管式反应器内壁SiO2与TiO2钝化层的原子层沉积制备及抗积碳性能[J]. 高等学校化学学报, 2019, 40(2): 201-209. |
[7] | 黄雅盼, 孙晓刚, 李锐, 梁国东, 魏成成, 胡浩. 三(2-羧乙基)膦阻隔层对锂硫电池穿梭效应的抑制[J]. 高等学校化学学报, 2019, 40(11): 2375-2381. |
[8] | 梁芷珊, 倪爽, 代梦娇, 韩方杰, 韩立鹏, 牛利, 韩冬雪. 基于g-C3N4/P25复合光电敏感体系的中草药抗氧化容量测定[J]. 高等学校化学学报, 2019, 40(10): 2081-2089. |
[9] | 王杰, 孙晓刚, 陈玮, 李旭, 黄雅盼, 魏成成, 胡浩, 梁国东. 羟基化多壁碳纳米管三明治隔膜对锂硫电池电化学性能的改善[J]. 高等学校化学学报, 2018, 39(8): 1782-1789. |
[10] | 阿山, 郑家威, 刘聚明, 白杰, 杨桔材, 张前程. 乙酸修饰Ag/TiO2复合光催化剂的制备及协同催化性能[J]. 高等学校化学学报, 2017, 38(8): 1450-1457. |
[11] | 李孝慈, 奚志文, 刘行, 李明, 郝志显, 朱志荣. TiO2助剂对乙苯脱氢催化剂性能的影响[J]. 高等学校化学学报, 2017, 38(7): 1229-1234. |
[12] | 杨彩虹, 满春利, 薛琬蕾, 王挺, 陈迪, 陈潜, 吴礼光. 二氧化钛纳米粒子-氧化石墨烯/聚酰亚胺混合基质膜的原位聚合及气体渗透性能[J]. 高等学校化学学报, 2017, 38(4): 686-693. |
[13] | 张春磊, 黄丹娅, 孙明慧, 欧阳逸挺, 王超, 李小云, 陈丽华, 苏宝连. 非金属元素掺杂及三维花状多级结构对介孔TiO2可见光催化性能的促进作用[J]. 高等学校化学学报, 2017, 38(3): 471-478. |
[14] | 郑家伟, 姜玲, 丁勇, 莫立娥, 丁有才, 胡林华, 戴松元. Au掺杂对TiO2薄膜表面态及电荷传输性能的影响[J]. 高等学校化学学报, 2017, 38(11): 2038-2044. |
[15] | 高鹤, 梁大鑫, 李坚, 庞广生, 方振兴. 纳米TiO2-ZnO二元负载木材的制备及性质[J]. 高等学校化学学报, 2016, 37(6): 1075-1081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||