高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (9): 20250122.doi: 10.7503/cjcu20250122
收稿日期:
2025-04-23
出版日期:
2025-09-10
发布日期:
2025-06-23
通讯作者:
王一鸣,范杰
E-mail:506275236@qq.com;jfan@zju.edu.cn
作者简介:
王一鸣, 男, 硕士, 专利审查员, 知识产权师, 主要从事化学领域发明专利的实质审查. E-mail: 506275236@qq.com基金资助:
LAI Lina1,2, BAO Yunxin3, WANG Yiming4(), FAN Jie3(
)
Received:
2025-04-23
Online:
2025-09-10
Published:
2025-06-23
Contact:
WANG Yiming, FAN Jie
E-mail:506275236@qq.com;jfan@zju.edu.cn
Supported by:
摘要:
甲烷作为一种重要化工原料, 具有储量大、 成本低及可再生的特点. 在当前碳中和及净零碳排放的背景下, 探索甲烷高值化学品转化的可行路径, 如转化为氢气、 甲醇、 烯烃、 芳烃和燃料等, 是甲烷资源化利用的重要方向. 开发温和反应条件、 低能耗且经济友好的高值转化路线, 以实现甲烷中碳(C)原子和氢(H)原子的高效利用一直是研究热点. 本文综合评述了近年来甲烷转化为高值化学品的研究进展, 并对热催化中不同转化路径的相关文献和专利进行了计量学分析, 在此基础上展望了甲烷转化未来面临的挑战和前景.
中图分类号:
TrendMD:
赖利娜, 鲍蕴心, 王一鸣, 范杰. 碳中和背景下甲烷高值转化路径分析. 高等学校化学学报, 2025, 46(9): 20250122.
LAI Lina, BAO Yunxin, WANG Yiming, FAN Jie. Analysis of High Value Methane Conversion Pathways in the Context of Carbon Neutrality. Chem. J. Chinese Universities, 2025, 46(9): 20250122.
Fig.4 SCI⁃indexed journal articles(A), life cycle analysis of organizations publishing papers(B), worldwide patent applications(C), life cycle analysis of global patents in the field of methane conversion in the past 50 years(D)
System | Catalyst | Temperature/℃ | Reaction condition | CH4 | H2 | H2 | Ref. |
---|---|---|---|---|---|---|---|
Conv.(%) | Sel.(%) | Yield/(mg·g | |||||
·Molten media catalyst | NiMo⁃Bi | 800 | 100%CH4 reactant gas=4 sccm | 78 | 100 | 0.25 | [ |
MnCl2⁃KCl | 1050 | 100%CH4 reactant gas=5 sccm | 50 | 100 | — | [ | |
·Solid catalyst | Ni⁃Pd/Al2O3 | 800 | CH4/N2=3/7 GHSV=24000 mL·g | 90 | — | — | [ |
Ni⁃Fe/MgO | 700 | CH4/N2=3/2 GHSV=24000 mL·g | 64 | — | 5.2 | [ | |
Fe/CeO2 | 800 | 100%CH4 GHSV=12000 mL·g | 54 | — | 4.4 | [ | |
Fe/Al2O3 | 700 | CH4/N2=3/7 GHSV=42000 mL·g | 60 | — | 36 | [ |
Table 1 Representative catalysts for methane to blue hydrogen
System | Catalyst | Temperature/℃ | Reaction condition | CH4 | H2 | H2 | Ref. |
---|---|---|---|---|---|---|---|
Conv.(%) | Sel.(%) | Yield/(mg·g | |||||
·Molten media catalyst | NiMo⁃Bi | 800 | 100%CH4 reactant gas=4 sccm | 78 | 100 | 0.25 | [ |
MnCl2⁃KCl | 1050 | 100%CH4 reactant gas=5 sccm | 50 | 100 | — | [ | |
·Solid catalyst | Ni⁃Pd/Al2O3 | 800 | CH4/N2=3/7 GHSV=24000 mL·g | 90 | — | — | [ |
Ni⁃Fe/MgO | 700 | CH4/N2=3/2 GHSV=24000 mL·g | 64 | — | 5.2 | [ | |
Fe/CeO2 | 800 | 100%CH4 GHSV=12000 mL·g | 54 | — | 4.4 | [ | |
Fe/Al2O3 | 700 | CH4/N2=3/7 GHSV=42000 mL·g | 60 | — | 36 | [ |
Fig.7 Thesis publication and patent application trends in the past 20 years, comparison of the number of applicants for patent conversions(including conversions and licenses) in major filing countries around the world in the field of methane to grey hydrogen(A) and methane to blue hydrogen(B)Inset: comparison of the number of applicants for patent conversions(including conversions and licenses) in major filing countries around the world.
Catalyst | Reaction condition | Temperature/℃ | CH4 | C2 | C2 | Ref. |
---|---|---|---|---|---|---|
Conv.(%) | Sel.(%) | Yield(%) | ||||
3.6Li/MgO | CH4/O2=2/1, GHSV=11250 mL·g | 700 | 38 | 55 | 20.9 | [ |
La2Ce2O7 | CH4/O2=4/1, GHSV=18000 mL·g | 550 | 30 | 50 | 15.0 | [ |
Mn⁃Na2WO4/SiO2 | CH4/O2=4.5/1, GHSV=12000 mL·g | 800 | 35 | 80 | 28.0 | [ |
MnO x ⁃Na2WO4/A⁃SiO2 | CH4/O2=5/1, GHSV=10000 mL·g | 680 | 23 | 72 | 16.6 | [ |
Sm2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 500 | 28 | 42 | 11.8 | [ |
Sr⁃La2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 650 | 37 | 54 | 20.0 | [ |
Mn⁃Na2WO4/LaCeZr | CH4/O2=3/1, GHSV=4000 mL·g | 700 | 37 | 55 | 20.8 | [ |
MnTiO3⁃Na2WO4/SiO2 | CH4/O2/N2=5/1/4, GHSV=8000 mL·g | 700 | 20 | 70 | 14.0 | [ |
La2O3⁃NaWSi | CH4/O2=3/1, GHSV=20000 mL·g | 570 | 31 | 34 | 10.6 | [ |
Mn/Na2WO4/LaCeZr⁃NaWZr/SiC | CH4/O2=1/1, GHSV=4000 mL·g | 700 | 70 | 50 | 35.0 | [ |
Fe©SiO2 | CH4/N2=9/1, GHSV=21400 mL·g | 1090 | 48 | 48 | 23.3 | [ |
Table 2 Representative catalysts for methane to olefins
Catalyst | Reaction condition | Temperature/℃ | CH4 | C2 | C2 | Ref. |
---|---|---|---|---|---|---|
Conv.(%) | Sel.(%) | Yield(%) | ||||
3.6Li/MgO | CH4/O2=2/1, GHSV=11250 mL·g | 700 | 38 | 55 | 20.9 | [ |
La2Ce2O7 | CH4/O2=4/1, GHSV=18000 mL·g | 550 | 30 | 50 | 15.0 | [ |
Mn⁃Na2WO4/SiO2 | CH4/O2=4.5/1, GHSV=12000 mL·g | 800 | 35 | 80 | 28.0 | [ |
MnO x ⁃Na2WO4/A⁃SiO2 | CH4/O2=5/1, GHSV=10000 mL·g | 680 | 23 | 72 | 16.6 | [ |
Sm2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 500 | 28 | 42 | 11.8 | [ |
Sr⁃La2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 650 | 37 | 54 | 20.0 | [ |
Mn⁃Na2WO4/LaCeZr | CH4/O2=3/1, GHSV=4000 mL·g | 700 | 37 | 55 | 20.8 | [ |
MnTiO3⁃Na2WO4/SiO2 | CH4/O2/N2=5/1/4, GHSV=8000 mL·g | 700 | 20 | 70 | 14.0 | [ |
La2O3⁃NaWSi | CH4/O2=3/1, GHSV=20000 mL·g | 570 | 31 | 34 | 10.6 | [ |
Mn/Na2WO4/LaCeZr⁃NaWZr/SiC | CH4/O2=1/1, GHSV=4000 mL·g | 700 | 70 | 50 | 35.0 | [ |
Fe©SiO2 | CH4/N2=9/1, GHSV=21400 mL·g | 1090 | 48 | 48 | 23.3 | [ |
Fig.8 CH4 conversion/C2+ selectivity/yield and operating temperatures of the low⁃temperature oxidative coupling of methane catalysts reported in literature[59]Adoped from Ref.[59]. Open access.
Fig.9 Thesis publication and patent application trends in methane to Olefin in the past 20 years and comparison of the number of applicants for patent conversions (including conversions and licenses) in major filing countries around the worldInset: comparison of the number of applicants for patent conversions (including conversions and licenses) in major filing countries around the world
[1] | Seneviratne S. I., Donat M. G., Pitman A. J., Knutti R., Wilby R. L., Nature, 2016, 529(7587), 477—483 |
[2] | Masson⁃Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M., Huang M., Leitzell K., Lonnoy E., Matthews J., Maycock T., Waterfield T., Yeleksi O., Yu R., Zhou B., The Intergovernmental Panel on Climate Change(IPCC), 2021: Summary for Policymakers, Cambridge University Press, 2021, 3—32 |
[3] | Climate Action Tracker, Glasgow’s 2030 Credibility Gap: Net Zero’s Lip vice to Climate Action, 2023 |
[4] | Nesterenko N., Medeiros⁃Costa I. C., Clatworthy E. B., Cruchade H., Konnov S. V., Dath J. P., Gilson J. P., Mintova S., Natl. Sci. Rev., 2023, 10(9), 50—65 |
[5] | He M. Y., Sun Y. H., Han B. X., Angew. Chem. Int. Ed., 2022, 61(15), e202112835 |
[6] | Aguilera R. F., Aguilera R., Miner. Econ., 2020, 33(1/2), 73—80 |
[7] | Horn R., Schloegl R., Catal. Lett., 2015, 145(1), 23—39 |
[8] | Ji M. D., Wang J. L., Int. J. Hydrogen Energy, 2021, 46(78), 38612—38635 |
[9] | Bengaard H. S., Norskov J. K., Sehested J., Clausen B. S., Nielsen L. P., Molenbroek A. M., Rostrup⁃Nielsen J. R., J. Catal., 2002, 209(2), 365—384 |
[10] | Roh H. S., Eum I. H., Jeong D. W., Renew. Energy, 2012, 42, 212—216 |
[11] | Balasubramanian B., Ortiz A. L., Kaytakoglu S., Harrison D. P., Chem. Eng. Sci., 1999, 54(15/16), 3543—3552 |
[12] | Wang H., Cui G. Q., Lu H., Li Z. Y., Wang L., Meng H., Li J., Yan H., Yang Y. S., Wei M., Nat. Commun., 2024, 15(1), 3765 |
[13] | Zhang X., Xu Y., Liu Y., Niu L., Diao Y., Gao Z., Chen B., Xie J., Bi M., Wang M., Xiao D., Ma D., Shi C., Chem, 2023, 9(1), 102—116 |
[14] | Zhang J., Yang T., Rao Q., Gai Z., Li P., Shen Y., Liu M., Pan Y., Jin H., Fuel, 2024, 366, 131344 |
[15] | Chen S., Zeng L., Tian H., Li X., Gong J., ACS Catal., 2017, 7(5), 3548—3559 |
[16] | Ingham A., Johnson Matthey Technol. Rev., 2017, 61(4), 297—307 |
[17] | Ayabe S., Omoto H., Utaka T., Kikuchi R., Sasaki K., Teraoka Y., Eguchi K., Appl. Catal. A: Gen., 2003, 241(1/2), 261—269 |
[18] | Cheng Z. X., Wu Q. L., Li J. L., Zhu Q. M., Catal. Today, 1996, 30(1—3), 147—155 |
[19] | Buelens L. C., Galvita V. V., Poelman H., Detavernier C., Marin G. B., Science, 2016, 354(6311), 449—452 |
[20] | Minutillo M., Perna A., Int. J. Hydrogen Energy, 2010, 35(13), 7012—7020 |
[21] | Ling Y., Wang H., Liu M., Wang B., Li S., Zhu X., Shi Y., Xia H., Guo K., Hao Y., Jin H., Energy Environ. Sci., 2022, 15(5), 1861—1871 |
[22] | Patlolla S. R., Katsu K., Sharafian A., Wei K. V., Herrera O. E., Mérida W., Renew. Sust. Energ. Rev., 2023, 181, 113323 |
[23] | Moghaddam A. L., Hejazi S., Fattahi M., Kibria M. G., Thomson M. J., Aleisa R., Khan M. A., Energy Environ. Sci., 2025, 18(6), 2747—2790 |
[24] | Shokrollahi M., Teymouri N., Ashrafi O., Navarri P., Khojasteh⁃Salkuyeh Y., Int. J. Hydrogen Energy, 2024, 66, 337—353 |
[25] | Chan Y., Chan Z. P., Lock S. S. M., Yiin C. L., Foong S. T., Wong M. K., Ishak M. A., Quek V. C., Ge S., Lam S. S. L., Chin. Chem. Lett., 2024, 35(8), 109329 |
[26] | Chen G., Tu X., Homm G., Weidenkaff A., Nat. Rev. Mater., 2022, 7(5), 333—334 |
[27] | Sánchez⁃Bastardo N., Schlögl R., Ruland H., Ind. Eng. Chem. Res., 2021, 60(32), 11855—11881 |
[28] | Scheiblehner D., Neuschitzer D., Wibner S., Sprung A., Antrekowitsch H., Int. J. Hydrogen Energy, 2023, 48(16), 6233—6243 |
[29] | Upham D. C., Agarwal V., Khechfe A., Snodgrass Z. R., Gordon M. J., Metiu H., McFarland E. W., Science, 2017, 358(6365), 917—920 |
[30] | Chen L. N., Song Z. G., Zhang S. C., Chang C. K., Chuang Y. C., Peng X. X., Dun C., Urban J. J., Guo J. H., Chen J. L., Prendergast D., Salmeron M., Somorjai G. A., Su J., Science, 2023, 381(6660), 857—861 |
[31] | Pangestu M. R. G., Malaibari Z., Muhammad A., Al⁃Rowaili F. N., Zahid U., Energ. Fuel, 2024, 38(15), 13514—13538 |
[32] | Ahn S. Y., Kim K. J., Kim B. J., Hong G. R., Jang W. J., Bae J. W., Park Y. K., Jeon B. H., Roh H. S., Renew. Sust. Energ. Rev., 2023, 186, 113635 |
[33] | Salkuyeh Y. K., Saville B. A., MacLean H. L., Int. J. Hydrogen Energy, 2017, 42(30), 18894—18909 |
[34] | Ghavam S., Vahdati M., Wilson I. A. G., Styring P., Front. Energy Res., 2021, 9, 580808 |
[35] | Luo Y., Shi Y. X., Li W. Y., Ni M., Cai N. S., Int. J. Hydrogen Energy, 2014, 39(20), 10359—10373 |
[36] | Sun J., Alam D., Daiyan R., Masood H., Zhang T. Q., Zhou R. W., Cullen P. J., Lovell E. C., Jalili A., Amal R., Energy Environ. Sci., 2021, 14(2), 865—872 |
[37] | Yang L. C., Ge X. M., Wan C. X., Yu F., Li Y. B., Renew. Sust. Energ. Rev., 2014, 40, 1133—1152 |
[38] | Bozzano G., Manenti F., Prog. Energy Combust. Sci., 2016, 56, 71—105 |
[39] | Olah G. A., Angew. Chem. Int. Ed., 2005, 44(18), 2636—2639 |
[40] | Filosa C., Gong X., Bavykina A., Chowdhury A. D., Gallo J. M. R., Gascon J., Acc. Chem. Res., 2023, 56(23), 3492—3503 |
[41] | Dummer N. F., Willock D. J., He Q., Howard M. J., Lewis R. J., Qi G. D., Taylor S. H., Xu J., Bethell D., Kiely C. J., Hutchings G. J., Chem. Rev., 2023, 123(9), 6359—6411 |
[42] | Zakaria Z., Kamarudin S. K., Renew. Sust. Energ. Rev., 2016, 65, 250—261 |
[43] | Ravi M., Ranocchiari M., van Bokhoven J. A., Angew. Chem. Int. Ed., 2017, 56(52), 16464—16483 |
[44] | Taylor S. H., Hargreaves J. S. J., Hutchings G. J., Joyner R. W., Lembacher C. W., Catal. Today, 1998, 42(3), 217—224 |
[45] | Otsuka K., Hatano M., J. Catal., 1987, 108(1), 252—255 |
[46] | Shan J. J., Li M. W., Allard L. F., Lee S. S., Maria F. S., Nature, 2017, 551(7682), 605—608 |
[47] | Agarwal N., Freakley S. J., McVicker R. U., Althahban S. M., Dimitratos N., He Q., Morgan D. J., Jenkins R. L., Willock D. J., Taylor S. H., Kiely C. J., Hutchings G. J., Science, 2017, 358(6360), 223—226 |
[48] | Sushkevich V. L., Palagin D., Ranocchiari M., van Bokhoven J. A., Science, 2017, 356(6337), 523—527 |
[49] | Jin Z., Wang L., Zuidema E., Mondal K., Zhang M., Zhang J., Wang C., Meng X., Yang H., Mesters C., Xiao F. S., Science, 2020, 367(6474), 193—197 |
[50] | Schwach P., Pan X. L., Bao X. H., Chem. Rev., 2017, 117(13), 8497—8520 |
[51] | Gambo Y., Jalil A. A., Triwahyono S., Abdulrasheed A. A., J. Ind. Eng. Chem., 2018, 59, 218—229 |
[52] | Keller G. E., Bhasin M. M., J. Catal., 1982, 73(1), 9—19 |
[53] | Kondratenko E. V., Schlueter M., Baerns M., Linke D., Holena M., Catal. Sci. Technol., 2015, 5(3), 1668—1677 |
[54] | Li S. B., Chin. J. Chem., 2001, 19(1), 16—21 |
[55] | Zavyalova U., Holena M., Schloegl R., Baerns M., ChemCatChem, 2011, 3(12), 1935—1947 |
[56] | Labinger J. A., Ott K. C., J. Phys. Chem., 1987, 91(11), 2682—2684 |
[57] | Tang P., Zhu Q., Wu Z., Ma D., Energy Environ. Sci., 2014, 7(8), 2580—2591 |
[58] | Ortiz⁃Bravo C. A., Chagas C. A., Toniolo F. S., J. Nat. Gas Sci. Eng., 2021, 96, 104254 |
[59] | Hu J. B., Zhao Y. L., Liu F. W., Chen X. T., Xiao L. P., Zou S. H., Fan J., Mater. Today Sustainability, 2025, 29, 101053 |
[60] | Wang J., Liu F., Wu J., Zou S., Fan J., Catal. Sci. Technol., 2023, 13(8), 2493—2499 |
[61] | Zou S., Wang J., Liu J., Zhou Q., Pan Y., Yuan W., Hu J., Wang Y., Yang J., Wang Y., Liu J., Ma L., Du Y., Yang B., Fan J., ChemRxiv, 2024, doi: 10.26434/chemrxiv⁃2024⁃rmvt4 |
[62] | Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344(6184), 616—619 |
[63] | Hao J., Schwach P., Fang G., Guo X., Zhang H., Shen H., Huang X., Eggart D., Pan X., Bao X., ACS Catal., 2019, 9(10), 9045—9050 |
[64] | Postma R. S., Lefferts L., ChemCatChem, 2021, 13(4), 1157—1160 |
[65] | Li J., He Y., Tan L., Zhang P., Peng X., Oruganti A., Yang G., Abe H., Wang Y., Tsubaki N., Nat. Catal., 2018, 1(10), 787—793 |
[66] | Friedel R. A., Anderson R. B., J. Am. Chem. Soc., 1950, 72(3), 1212—1215 |
[67] | Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., Wang Y., Chem. Soc. Rev., 2019, 48(12), 3193—3228 |
[68] | Galvis H. M. T., de Jong K. P., ACS Catal., 2013, 3(9), 2130—2149 |
[69] | Chen X. Q., Deng D. H., Pan X. L., Hu Y. F., Bao X. H., Chem. Commun., 2015, 51(1), 217—220 |
[70] | Chang C. D., Silvestri A. J., J. Catal., 1977, 47(2), 249—259 |
[71] | Xu S., Zhi Y., Han J., Zhang W., Wu X., Sun T., Wei Y., Liu Z., Adv. Catal., 2017, 61, 37—122 |
[72] | Liu Z., Liang J., Curr. Opin. Solid State Mater. Sci., 1999, 4(1), 80—84 |
[73] | Zhu Z., Fan M., He M., An B., Chen Y., Xu S., Zhou T., Sheveleva A. M., Kippax⁃Jones M., Shan L., Cheng Y., Cavaye H., Armstrong J., Rudié S., Parker S. F.,Thornley W., Tillotson E., Lindley M., Tian S., Lee S., Fu S., Frogley M. D., Tuna F., Melnnes E., Haigh S., Yang S., Sci. Bull., 2025, 70(5), 694—703 |
[74] | Wang Y., Zou S., Nabera A., Chen X., Pan Y., Wei K., Bao Y., Hu J., Zhao Y., Liu C., Liu J., Wang Y., Ren Y., Gonzalo G., Javier P., Fan J., J. Am. Chem. Soc., 2025, 147(9), 7757—7764 |
[75] | Xie S., Lin S., Zhang Q., Tian Z., Wang Y., J. Energy Chem., 2018, 27(6), 1629—1636 |
[76] | Yentekakis I. V., Jiang Y., Makri M., Vayenas C. G., Stud. Surf. Sci. Catal., 1997, 107, 307—312 |
[77] | Liu K., Zhao J., Zhu D., Meng F., Kong F., Tang Y., Catal. Commun., 2017, 96, 23—27 |
[78] | Jiang W., Low J., Mao K., Duan D., Chen S., Liu W., Pao C. W., Ma J., Sang S., Shu C., Zhan X., Qi Z., Zhang H., Liu Z., Wu X., Long R., Song L., Xiong Y., J. Am. Chem. Soc., 2021, 143(1), 269—278 |
[79] | Kang D., Rahimi N., Gordon M. J., Metiu H., McFarland E. W., Appl. Catal. B, 2019, 254, 659—666 |
[80] | Bayat N., Rezaei M., Meshkani F., Int. J. Hydrogen Energy, 2016, 41(12), 5494—5503 |
[81] | Al⁃Fatesh A., Barama S., Ibrahim A., Barama A., Khan W., Fakeeha A., Chem. Eng. Commun., 2017, 204(7), 739—749 |
[82] | Pudukudy M., Yaakob Z., Jia Q., Takriff M. S., Appl. Surf. Sci., 2019, 467, 236—248 |
[83] | Wang I. W., Kutteri D. A., Gao B., Tian H., Hu J., Energ. Fuel., 2019, 33(1), 197—205 |
[84] | Pal R. S., Rana S., Sadhu S., Khan T. S., Poddar M. K., Singha R. K., Sarkar S., Sharma R., Bal R., Energy Adv., 2023, 2(1), 180—197 |
[85] | Zhang Y., Xu J., Xu X., Xi R., Liu Y., Fang X., Wang X., Catal. Today, 2020, 355, 518—528 |
[86] | Kiani D., Sourav S., Baltrusaitis J., Wachs I. E., ACS Catal., 2019, 9(7), 5912—5928 |
[87] | Si J., Zhao G., Sun W., Liu J., Guan C., Yang Y., Shi X. R., Lu Y., Angew. Chem. Int. Ed., 2022, 61(18), e202117201 |
[88] | Dedov A. G., Loktev A. S., Moiseev I. I., Aboukais A., Lamonier J. F., Filimonov I. N., Appl. Catal. A, 2003, 245(2), 209—220 |
[89] | Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y., Zhu Y., Nanoscale, 2015, 7(6), 2260—2264 |
[90] | Wang P., Zhao G., Liu Y., Lu Y., Appl. Catal. A, 2017, 544, 77—83 |
[91] | Zou S., Li Z., Zhou Q., Pan Y., Yuan W., He L., Wang S., Wen W., Liu J., Wang Y., Chin. J. Catal., 2021, 42(7), 1117—1125 |
[92] | Silvestri A. J., Abstr. Pap. Am. Chem. Soc., 1981, 181(MAR), 41—INDE |
[93] | Liu S., He J., Lu D., Sun J., Chem. Eng. Res. Des., 2020, 154, 182—191 |
[94] | v.d. Burgt M. J., van Leeuwen C. J., del'Amico J. J., Sie S. T., Stud. Surf. Sci. Catal., 1988, 36, 473—482 |
[95] | Oxidative Coupling of Methane followed by Oligomerization to Liquids. https: //cordis.europa.eu/project/id/228953/reporting |
[96] | Wang L. S., Tao L. X., Xie M. S., Xu G. F., Huang J. S., Xu Y. D., Catal. Lett., 1993, 21(1/2), 35—41 |
[97] | Huang X., Jiao X., Wang X., Zhao N., J. Fuel Chem. Technol., 2022, 50(1), 44—53 |
[98] | Spivey J. J., Hutchings G., Chem. Soc. Rev., 2014, 43(3), 792—803 |
[99] | Ali S. S., Shoeb M. A., Ansari K. B., Mesfer M. K., Danish M., Ansari M. Y., Energ. Fuel, 2023, 37(22), 17113—17133 |
[100] | Xie J., Fu C., Quesne M. G., Guo J., Wang C., Xiong L., Windle C. D., Gadipelli S., Guo Z. X., Huang W., Nature, 2025, 639, 368—374 |
[1] | 张义东, 袁家相, 方伟, 陆成龙, 陈辉, 何漩, 杜星, 李薇馨, 王大珩, 赵雷. 泡沫碳负载一维TiO2光热催化蒸发器的制备及污水蒸发降解性能[J]. 高等学校化学学报, 2024, 45(10): 20240295. |
[2] | 卞宣昂, 周超, 赵运宣, 张铁锐. 基于水滑石衍生钌催化剂光驱动合成氨的研究[J]. 高等学校化学学报, 2023, 44(6): 20230095. |
[3] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[4] | 孔令照,苗改,罗虎,孙予罕. 生物质水热催化制备重要含氧化学品研究进展[J]. 高等学校化学学报, 2020, 41(1): 11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||