高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6): 20240413.doi: 10.7503/cjcu20240413
李奇军1,3(), 赵宏佳1,3, 刘龙涛3, 鹿春怡2,3, 谈静2,3(
)
收稿日期:
2024-09-02
出版日期:
2025-06-10
发布日期:
2024-10-18
通讯作者:
李奇军,谈静
E-mail:liqijun@yzu.edu.cn;tanjing0916@163.com
基金资助:
LI Qijun1,3(), ZHAO Hongjia1,3, LIU Longtao3, LU Chunyi2,3, TAN Jing2,3(
)
Received:
2024-09-02
Online:
2025-06-10
Published:
2024-10-18
Contact:
LI Qijun, TAN Jing
E-mail:liqijun@yzu.edu.cn;tanjing0916@163.com
Supported by:
摘要:
湿气发电是近年来兴起的一种新型能源转化方式, 它可以将大气环境湿气中的能量直接转化为电能, 且不会衍生任何污染物及有害气体. 得益于大气中无处不在的水汽和清洁无污染的发电过程, 这一发电技术适应性极宽, 不受时间、 地域及环境等自然条件限制, 因此“水汽发电”具有非常好的发展前景. 本文简单回顾了湿气发电技术的演进历程, 讨论了湿气与发电材料之间的相互作用机理, 主要包括离子梯度扩散和流动电势两个方面, 并对新型碳基吸湿层材料的种类、 特性及其优缺点进行了分析, 综合评述了湿气发电技术在最新应用领域的发展情况, 最后, 讨论了碳基湿气发电器件在应用中所面临的挑战和障碍, 并对未来该领域的研究方向进行了展望.
中图分类号:
TrendMD:
李奇军, 赵宏佳, 刘龙涛, 鹿春怡, 谈静. 碳基湿气发电器件的研究进展. 高等学校化学学报, 2025, 46(6): 20240413.
LI Qijun, ZHAO Hongjia, LIU Longtao, LU Chunyi, TAN Jing. Research Progress of Carbon-based Moisture Power Generation Devices. Chem. J. Chinese Universities, 2025, 46(6): 20240413.
Fig.1 Schematic diagram of ubiquitous moisture in the air caused by natural evaporation, transpiration, respiration and sublimation[4]Copyright 2018, the Royal Society of Chemistry.
Fig.4 Sandwich type moisture power generation device(A)[7] and planar moisture power generation device(B)[8](A) Copyright 2021, the Royal Society of Chemistry; (B) Copyright 2023, Elsevier.
Fig.5 Schematic diagram of the prototype chemical potential energy harvester(CPEh) based on g⁃3D⁃GO(A) and preparation of g⁃3D⁃GO by a three⁃step strategy of freeze⁃drying, tableting and polarization(B)[9](A, B) Copyright 2016, the Royal Society of Chemistry.
Fig.6 Schematic diagram and actual exhibition of CDs/paper⁃based moisture power generation devices, bending properties and SEM images of CDs/paper⁃based moisture power generation devices[21]Copyright 2018, the Royal Society of Chemistry.
Fig.7 Moisture generator mechanism of positive sealing(A), reverse sealing(B) and unsealed at both ends(C), schematic diagram of the preparation of asymmetric flexible power generation devices(D)
Fig.9 Measurement voltage of PA⁃CPD⁃based MEG equipment(A), measurement current of PA⁃CPD⁃based MEG devices(B), performance comparison of MEGs(C)[24]Copyright 2023, John Wiley and Sons.
Fig.10 TEM image of a network of purified nanowires generated by microorganisms, with a diagram of the device structure at the bottom(A)[25], NaClO⁃silk nanofibers(SNFs)/Quatern⁃SNFs aerogels and their SEM images, schematic diagram of NaClOSNFs/Quatern SNFs aerogel generators and their wet gas generators(B), moisture power generation devices based on protein/protein nanocompo⁃sites of whey protein nanofibers in whey protein matrix(C), schematic diagram of the synthesis of quaternary ammonium silk nanofibers with positive charge by mechanical exfoliation(D) and chemical reagent modification of silk protein extraction from mulberry silk(E)[26](A) Copyright 2020, Springer Nature; (B—E) Open Access.
Fig.11 Moisture power generation device prepared by PSSA/R membrane composed of PSSA matrix and R clusters(A)[31], the concept and working principle of biomimetic IAM(B)[32], experimental setup of PMEG and corresponding power output based on PSSA(C), simple and efficient WEG based on Geobacter sulfurreducens biofilm(D)[33]PSSA/R: poly(4-styrensulfonic acid)/rose bengal; IAM: an interface architecture with microgrooves; PMEG: polymer moist-electric generator; WEG: wet electric generator. (A) Copyright 2022, John Wiley and Sons; (B) Copyright 2023, the Royal Society of Chemistry; (C, D) Open Access.
Fig.12 Schematic diagram of an organic hybrid MEG composed of polyacrylamide(PAM⁃LiCl) ionic hydrogel and silicon nanowires(SiNW) incorporated with LiCl(A), top⁃down scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) of carbon fabrics(CF) with and without poly(3,4⁃ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS)(CFP) images(B), top view of PAM⁃LiCl ionic hydrogel⁃coated SiNWs SEM and EDS images(C)[36], schematic diagram of polyelectrolyte ionic paper conductor for moisture⁃induced generator(D)[37](A—C) Copyright 2024, the Royal Society of Chemistry; (D) Open Access.
Fig.13 Human body temperature sensing(A)[40], respiratory monitoring(B)[41], driving a small speedboat(C)[42], humidity detector and headphone charging(D)[43], motion sensing(E)[43] and use of smart home in the house(F)[42](A, B) Open Access; (C, F) Copyright 2022, John Wiley and Sons; (D, E) Copyright 2024, John Wiley and Sons.
1 | Wang X., Lin F., Wang X., Fang S., Tan J., Chu W., Rong R., Yin J., Zhang Z., Liu Y., Guo W., Chem. Soc. Rev., 2022, 51, 4902—4927 |
2 | Zhao F., Cheng H., Zhang Z., Jiang L., Qu L., Adv. Mater., 2015, 27, 4351—4357 |
3 | Lu W., Ong W. L., Ho G. W., J. Mater. Chem. A, 2023, 11, 12456—12481 |
4 | Zhang Z., Li X., Yin J., Xu Y., Fei W., Xue M., Wang Q., Zhou J., Guo W., Nat. Nanotech., 2018, 13, 1109—1119 |
5 | Yang S., Tao X., Chen W., Mao J., Luo H., Lin S., Zhang L., Hao J., Adv. Mater., 2022, 34, 2200693 |
6 | Xue G., Xu Y., Ding T., Li J., Yin J., Fei W., Cao Y., Yu J., Yuan L., Gong L., Chen J., Deng S., Zhou J., Guo W., Nat. Nanotech., 2017, 12, 317—321 |
7 | Sun Z., Feng L., Wen X., Wang L., Qin X., Yu J., Mater. Horiz., 2021, 8, 2303—2309 |
8 | He T., Wang H., Lu B., Guang T., Yang C., Huang Y., Cheng H., Qu L., Joule, 2023, 7, 935—951 |
9 | Zhao F., Liang Y., Cheng H., Jiang L., Qu L., Energ. Environ. Sci., 2016, 9, 912—916 |
10 | Huang Y., Cheng H., Yang C., Zhang P., Liao Q., Yao H., Shi G., Qu L., Nat. Commun., 2018, 9, 4166 |
11 | Xiong C., Li B., Duan C., Dai L., Nie S., Qin C., Xu Y., Ni Y., Chem. Eng. J., 2021, 418, 129518 |
12 | Zhu R., Zhu Y., Chen F., Patterson R., Zhou Y., Wan T., Hu L., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Chu D., Nano Energy, 2022, 94, 106942 |
13 | Zhao C. X., Liu J. N., Li B. Q., Ren D., Chen X., Yu J., Zhang Q., Adv. Funct. Mater., 2020, 30, 2003619 |
14 | Han Y., Zhang Z., Qu L., FlatChem, 2019, 14, 100090 |
15 | Huang Y., Cheng H., Shi G., Qu L., ACS Appl. Mater. Interfaces, 2017, 9, 38170—38175 |
16 | Lee K. H., Park H., Eom W., Kang D. J., Noh S. H., Han T. H., J. Mater. Chem. A, 2019, 7, 23727—23732 |
17 | Badatya S., Kumar A., Sharma C., Srivastava A. K., Chaurasia J. P., Gupta M. K., Mater. Lett., 2021, 290, 129493 |
18 | Ru Y., Ai L., Jia T., Liu X., Lu S., Tang Z., Yang B., Nano Today, 2020, 34, 100953 |
19 | Zhu S., Zhang J., Qiao C., Tang S., Li Y., Yuan W., Li B., Tian L., Liu F., Hu R., Gao H., Wei H., Zhang H., Sun H., Yang B., Chem. Commun., 2011, 47, 6858—6860 |
20 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6, 1901316 |
21 | Li Q., Zhou M., Yang Q., Yang M., Wu Q., Zhang Z., Yu J., J. Mater. Chem. A, 2018, 6, 10639—10643 |
22 | Qin J., Yang X., Shen C., Chang Y., Deng Y., Zhang Z., Liu H., Lv C., Li Y., Zhang C., Dong L., Shan C., Nano Energy, 2022, 101, 107549 |
23 | Yan Z., Li N., Chang Q., Xue C., Yang J., Hu S., Chem. Eng. J., 2023, 467, 143443 |
24 | Li Q., Qin Y., Cheng D., Cheng M., Zhao H., Li L., Qu S., Tan J., Ding J., Adv. Funct. Mater., 2023, 33, 2211013 |
25 | Liu X., Gao H., Ward J. E., Liu X., Yin B., Fu T., Chen J., Lovley D. R., Yao J., Nature, 2020, 578, 550—554 |
26 | Yang W. Q., Study on the Construction and Properties of Moisture Power Generation Materials Based on Biomass Nanofibers, Qingdao University, Qingdao, 2020 |
杨伟庆. 基于生物质纳米纤维的湿气发电材料构筑及其性能研究, 青岛: 青岛大学, 2020 | |
27 | Bao R., Luo H., Liu L., Yi J., Tao J., Li C., Compos. Commun., 2023, 38, 101491 |
28 | Sun Z., Feng L., Xiong C., He X., Wang L., Qin X., Yu J., J. Mater. Chem. A, 2021, 9, 7085—7093 |
29 | Tan J., Fang S., Zhang Z., Yin J., Li L., Wang X., Guo W., Nat. Commun., 2022, 13, 3643 |
30 | Zhu R., Zhu Y., Hu L., Guan P., Su D., Zhang S., Liu C., Feng Z., Hu G., Chen F., Wan T., Guan X., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Xu H., Chu D., Energ. Environ. Sci., 2023, 16, 2338—2345 |
31 | Bai J., Huang Y., Wang H., Guang T., Liao Q., Cheng H., Deng S., Li Q., Shuai Z., Qu L., Adv. Mater., 2022, 34, 2103897 |
32 | Bai J., Liao Q., Yao H., Guang T., He T., Cheng H., Qu L., Energ. Environ. Sci., 2023, 16, 3088—3097 |
33 | Maity D., Fussenegger M., Adv. Sci., 2023, 10, 2300750 |
34 | Xu T., Ding X., Huang Y., Shao C., Song L., Gao X., Zhang Z., Qu L., Energ. Environ. Sci., 2019, 12, 972—978 |
35 | Nie X., Ji B., Chen N., Liang Y., Han Q., Qu L., Nano Energy, 2018, 46, 297—304 |
36 | Duan W., Shao B., Wang Z., Ni K., Liu S., Yuan X., Wang Y., Sun B., Zhang X., Liu R., Energ. Environ. Sci., 2024, 17, 3788—3796 |
37 | Wu P., Chen Y., Luo Y., Ji W., Wang Y., Qian Z., Duan Y., Li X., Fu S., Gao W., Liu D., ACS Appl. Mater. Interfaces, 2024, 16, 32198—32208 |
38 | Shen D., Xiao M., Zou G., Liu L., Duley W. W., Zhou Y. N., Adv. Mater., 2018, 30, 1705925 |
39 | Qin Y., Wang Y., Sun X., Li Y., Xu H., Tan Y., Li Y., Song T., Sun B., Angew. Chem. Inter. Ed., 2020, 59, 10619—10625 |
40 | Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329 |
41 | Huang Y., Cheng H., Qu L., ACS Mater. Lett., 2021, 3, 193—209 |
42 | Bai J. X., Huang Y. X., Wang H. Y., Guang T. L., Liao Q. H., Cheng H. H., Deng S. H., Li Q. K., Shuai Z. G., Qu L. T., Adv. Mater., 2022, 34, 2103897 |
43 | Xu T., Ding X., Cheng H., Han G., Qu L., Adv. Mater., 2024, 36, 2209661 |
44 | Xu Y., Li Z., Shi C., Li Y., Lei Y., Peng G., Yu T., Ren H., Wang H., Fan H., Zhang Y., Ci Z., Wang Q., Jin Z., Adv. Mater., 2024, 36, 2406128 |
45 | Wang H., Sun Y., He T., Huang Y., Cheng H., Li C., Xie D., Yang P., Zhang Y., Qu L., Nat. Nanotech., 2021, 16, 811—819 |
46 | Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329 |
47 | Bai J., Huang Y., Cheng H., Qu L., Nanoscale, 2019, 11, 23083—23091 |
48 | Duan Z., Yuan Z., Jiang Y., Zhao Q., Huang Q., Zhang Y., Liu B., Tai H., Chem. Eng. J., 2022, 446, 136910 |
49 | Gao K., Sun J., Lin X., Li Y., Sun X., Chen N., Qu L., J. Mater. Chem. A, 2021, 9, 24488—24494 |
50 | He W., Li P., Wang H., Hu Y., Lu B., Weng C., Cheng H., Qu L., ACS Nano, 2024, 18, 12096—12104 |
[1] | 黄声秀, 刘利阳, 杨伟强, 汪庆祥, 倪建聪. 双极电化学发光-分子印迹传感器检测水环境中全氟辛烷磺酸[J]. 高等学校化学学报, 2024, 45(6): 20240106. |
[2] | 王文春, 马天赐, 刘春生. 二维半导体R57-BN作为钠离子电池阳极材料的理论研究[J]. 高等学校化学学报, 2024, 45(6): 20240043. |
[3] | 王帅, 孙雨涵, 高欣, 宋瑞, 赵铭钦, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇. 三维多孔铜及表面修饰铋协同构筑无枝晶锂金属电极[J]. 高等学校化学学报, 2024, 45(6): 20240122. |
[4] | 刘康, 潘荣容, 江德臣. 基于纳米电极的单细胞内生物分子电化学分析[J]. 高等学校化学学报, 2024, 45(5): 20240027. |
[5] | 隋光辉, 程岩岩. 以稻壳热解炭制备镧负载多孔炭复合电极材料[J]. 高等学校化学学报, 2024, 45(4): 20240012. |
[6] | 李赟, 李红艳, 张峰, 肖子君, 王芳, 崔佳丽, 杨群. 固废基气凝胶粒子电极的制备及电催化降解有机污染物的性能与机制[J]. 高等学校化学学报, 2024, 45(10): 20240320. |
[7] | 朱佳佳, 芮家亮, 石文文, 甘铠宁, 李宏强, 何孝军. 镍/氮共掺杂自支撑泡沫碳电极的构建及电催化CO2还原性能[J]. 高等学校化学学报, 2024, 45(10): 20240203. |
[8] | 孟治成, 卢勇, 严振华, 陈军. 对苯二酚钠正极材料的制备及在钠离子电池中的应用[J]. 高等学校化学学报, 2023, 44(8): 20230158. |
[9] | 王锡慧, 唐笑, 刘婷婷, 李艳虹, 荆川, 凌发令, 刘俊, 周贤菊, 姚璐, 周衡, 张家忠. TiO2提高富碳氮化碳的光生电荷存储性能[J]. 高等学校化学学报, 2023, 44(6): 20230028. |
[10] | 陈珊, 陈劲虎, 徐郭海林, 柳军, 钱明艳, 陈敬文, 方一民. 基于铂修饰丝网印刷电极检测土壤中铵态氮的电化学传感器[J]. 高等学校化学学报, 2023, 44(12): 20230390. |
[11] | 刘建芳, 赵浩成, 梁芳楠, 尤雪瑞, 周琨. 化学剥离碳化钛纳米片辅助合成可控尺寸的银纳米线[J]. 高等学校化学学报, 2023, 44(10): 20230009. |
[12] | 吴俊, 何观朝, 费慧龙. 自支撑单原子膜电极在能源电催化中的应用[J]. 高等学校化学学报, 2022, 43(5): 20220051. |
[13] | 侯从聪, 王惠颖, 李婷婷, 张志明, 常春蕊, 安立宝. N-CNTs/NiCo-LDH复合材料的制备及电化学性能[J]. 高等学校化学学报, 2022, 43(10): 20220351. |
[14] | 史潇凡, 朱剑, 白田宇, 付子萱, 张冀杰, 卜显和. 金属-有机框架材料在光电催化水分解领域的研究进展[J]. 高等学校化学学报, 2022, 43(1): 20210613. |
[15] | 徐晓龙, 方礼宁, 刘长宇, 刘敏超, 郏建波. Z型 g-C3N4/Pt/TiO2纳米管阵列复合电极的制备及光电氧化甲醇性能[J]. 高等学校化学学报, 2021, 42(9): 2926. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||