高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (5): 20240055.doi: 10.7503/cjcu20240055

• 物理化学 • 上一篇    下一篇

绣球花状ZnIn2S4/CoWO4 S型异质结的构建及可见光催化产氢性能

赵玉彤, 王仕凯, 赵福萍, 陈志合, 赵丽杰, 张大凤(), 葛博, 蒲锡鹏()   

  1. 聊城大学材料科学与工程学院, 聊城 252059
  • 收稿日期:2024-01-29 出版日期:2024-05-10 发布日期:2024-03-13
  • 通讯作者: 张大凤,蒲锡鹏 E-mail:dafengzh@hotmail.com;puxipeng@lcu.edu.cn
  • 基金资助:
    国家自然科学基金(52305196);山东省自然科学基金(ZR2022ME179)

Construction and Visible Photocatalytic Hydrogen Performance of Hydrangea-like ZnIn2S4/CoWO4 S-scheme Heterojunction

ZHAO Yutong, WANG Shikai, ZHAO Fuping, CHEN Zhihe, ZHAO Lijie, ZHANG Dafeng(), GE Bo, PU Xipeng()   

  1. School of Materials Science and Engineering,Liaocheng University,Liaocheng 252059,China
  • Received:2024-01-29 Online:2024-05-10 Published:2024-03-13
  • Contact: ZHANG Dafeng, PU Xipeng E-mail:dafengzh@hotmail.com;puxipeng@lcu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52305196);the Natural Science Foundation of Shandong Province, China(ZR2022ME179)

摘要:

通过合理设计异质结结构来加速光催化产氢反应在高效光催化材料的开发中发挥着不可或缺的作用. ZnIn2S4(ZIS)由于其优异的光电性能和较负的导带位置, 在光催化产氢领域受到了广泛关注, 但其仍存在严重的光生载流子复合和团聚问题. 为此, 首先通过理论计算预测了ZnIn2S4/CoWO4(ZIS/CWO) S型异质结的能带结构及电子转移路径, 并通过电子局域函数和电荷密度差分确定了异质结界面处的电子交换. 随后, 采用超声-搅拌-煅烧法将CWO纳米颗粒分散并负载到ZIS花球表面, 获得了绣球花状ZIS/CWO S型异质结光催化剂. 由于ZIS与CWO之间紧密的界面以及形成的内部电场, 致使ZIS/CWO S型异质结的光生电子-空穴对得到了有效分离, 进而提高了光催化产氢效率. 同时, 实验结果确定了S型异质结的形成和载流子的传输路径, 揭示了光催化反应机理.

关键词: 光催化产氢, S型异质结, ZnIn2S4, CoWO4, 理论计算

Abstract:

Rational design of heterojunction structures to accelerate photocatalytic hydrogen evolution plays an indispensable role in the development of photocatalytic materials. ZnIn2S4(ZIS) has been widely used in the field of photocatalytic hydrogen evolution due to its excellent photoelectric properties and negative conduction band position, but it still has serious problems of photogenerated carrier recombination and aggregation. Therefore, the band structure and electron transfer path of ZnIn2S4/CoWO4(ZIS/CWO) S-scheme heterojunction were predicted by theoretical calculation, and the electron exchange at the interface of the heterojunction was determined by electron localization function and charge density difference. Subsequently, CWO nanoparticles were dispersed and fixed on the surface of ZIS flower balls by ultrasonic-agitation-calcination method, and the hydrangea-like ZIS/CWO S-scheme heterojunction was obtained. Owing to the tight interface and the formation of internal electric field between ZIS and CWO, the photogenerated electron-hole pairs in ZIS/CWO S-scheme heterojunction can be effectively separated, thus enhancing the photocatalytic hydrogen evolution performance. Meanwhile, the experimental results confirmed the formation of S-scheme heterojunction and carrier transport path, revealing the in-depth mechanism of photocatalytic hydrogen evolution. This work offers novel insights and approaches for the design, construction, and theoretical calculation of S-scheme heterojunction photocatalysts.

Key words: Photocatalytic hydrogen evolution, S-scheme heterojunction, ZnIn2S4, CoWO4, Theoretical calculation

中图分类号: 

TrendMD: