高等学校化学学报

• 研究论文 • 上一篇    下一篇

球形二氧化硅微粒表面特性调控对电子封装用环氧树脂复合材料性能的影响

张丽丽1,2,胡海军1,李厚文3,聂兴成2,李斌3,张海琳1,2,胡乔巨2,郑德州3,张国庆3,井金峰3,刘文星1,2,高长有1,2   

  1. 1. 浙江大学高分子科学与工程学系,教育部高分子合成与功能构造重点实验室 2. 浙江大学绍兴研究院大健康材料分中心,医用高分子材料与器械表界面技术浙江省工程研究中心,绍兴市大健康材料与应用技术重点实验室 3. 莲花控股股份有限公司
  • 收稿日期:2025-05-18 修回日期:2025-06-20 网络首发:2025-06-24 发布日期:2025-06-24
  • 通讯作者: 高长有 E-mail:cygao@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金资助项目(批准号:ZCLMS25B0203)资助

Effects of Surface Modification Strategies of Spherical Silica Particles on Properties of Epoxy Resin Composites for Electronic Packaging

ZHANG Lili1,2, HU Haijun1, LI Houwen3, NIE Xingcheng2, LI Bin3, ZHANG Hailin1,2, HU Qiaoju2, ZHENG Dezhou3, ZHANG Gouqing3, JIN Jingfeng3, LIU Wenxing1,2, GAO Changyou1,2   

  1. 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University 2. Zhejiang Engineering Research Center for Interface Technology of Medical Polymers and Devices, Shaoxing Key Laboratory of Healthcare Materials and Application Technology, and Center for Healthcare Materials, Shaoxing Institute, Zhejiang University 3. Lotus Holdings Co., LTD.
  • Received:2025-05-18 Revised:2025-06-20 Online First:2025-06-24 Published:2025-06-24
  • Contact: GAO Changyou E-mail:cygao@zju.edu.cn
  • Supported by:
    Supported by the Zhejiang Provincial Natural Science Foundation of China, China(No.ZCLMS25B0203)

摘要: 系统研究了硅烷偶联剂(SCA)界面改性对二氧化硅微粒/环氧树脂复合材料性能的影响。通过表面能谱分析验证了硅烷偶联剂在二氧化硅微粒表面的成功接枝,并制备了高填料含量(50%,质量分数)的环氧树脂基封装膜,对比了改性前后复合材料的综合性能。研究结果表明:γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH-560)KH-560因环氧基团参与树脂交联反应,显著提升了界面结合强度,其复合材料的玻璃化转变温度(170.38 ℃)、导热系数(0.15 W/mK)及拉伸强度(102.79 MPa)均最高;N-苯基-3-氨基丙基三甲氧基硅烷(KBM-573)因苯环的疏水性与共轭效应,赋予材料最高水接触角(114.9°),但力学性能略低;γ-氨丙基三甲氧基硅烷(KH-540)改性体系因氨基极性导致介电性能与疏水性改善有限。研究揭示了改性二氧化硅微粒对“力学-热学-电学”性能的协同作用,为电子封装材料的性能定向优化提供了理论依据。

关键词: 硅烷偶联剂, 二氧化硅微粒改性, 电子封装, 环氧树脂, 介电损耗

Abstract: The effect of silane coupling agent (SCA) interfacial modification on the properties of silica particles/epoxy composites was systematically investigated to address the performance bottlenecks of epoxy resin-based electronic packaging materials in terms of high thermal conductivity, low dielectric loss, and moisture and thermal stability. The successful grafting of silane coupling agents onto the silica particle surface was verified by surface energy spectroscopy analysis, and epoxy resin-based packaging films with high filler content(50%, mass fraction) were prepared to compare the overall performance of the composites before and after modification. The incorporation of γ-glycidyloxypropyltrimethoxysilane(KH-560) enhanced the interfacial bonding strength of resin through the participation of epoxy groups in the cross-linking reaction. The resultant composites exhibited an optimal glass transition temperature of 170.38 °C, a thermal conductivity of 0.15 W/mK, and a tensile strength of 102 MPa. The resin prepared by using N-phenyl-3-aminopropyltrimethoxysilane (KBM-573)-modified silica particles exhibited a water contact angle of 114.9° and slightly lower mechanical properties due to the hydrophobicity of the benzene ring and conjugation effect. The γ-aminopropyltrimethoxysilane (KH-540)-modified system demonstrated limited improvement in dielectric properties and hydrophobicity due to the amine polarity. The present study elucidated the synergistic effect of modified silica particles on the mechanical, thermal, and electrical properties. This finding provides a theoretical basis for the targeted optimization of electronic packaging materials.

Key words: Silane coupling agent, Silica particle modification; Electronic packaging, Epoxy resin, Dielectric loss

TrendMD: