高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (5): 20220727.doi: 10.7503/cjcu20220727

• 综合评述 • 上一篇    下一篇

基于三维亲锂材料的高稳定金属锂负极的构筑

屠兴超1, 古兴兴2(), 赖超1()   

  1. 1.江苏师范大学化学与材料科学学院, 徐州 221116
    2.重庆工商大学环境与资源学院, 催化与环境新材料重庆市重点实验室, 重庆 400065
  • 收稿日期:2022-11-19 出版日期:2023-05-10 发布日期:2023-02-06
  • 通讯作者: 古兴兴,赖超 E-mail:x.gu@ctbu.edu.cn;laichao@jsnu.edu.cn
  • 基金资助:
    国家自然科学基金(22222902);重庆市自然科学基金(cstc2019jcyj-msxm1407);江苏省自然科学基金(BK20211352);重庆市归国留学人员创业创新计划项目(CX2021046)

Construction of Highly Stable Lithium Metal Anode Based on Three Dimensional Lipophilic Materials

TU Xingchao1, GU Xingxing2(), LAI Chao1()   

  1. 1.School of Chemistry and Materials Science,Jiangsu Normal University,Xuzhou 221116,China
    2.Chongqing Key Laboratory of Catalysis and New Environmental Materials,College of Environment and Resources,Chongqing Technology and Business University,Chongqing 400067,China
  • Received:2022-11-19 Online:2023-05-10 Published:2023-02-06
  • Contact: GU Xingxing, LAI Chao E-mail:x.gu@ctbu.edu.cn;laichao@jsnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22222902);the Natural Science Foundation of Chong-qing Science & Technology Commission, China(cstc2019jcyj-msxm1407);the Natural Science Foundation of Jiangsu Province, China(BK20211352);the Venture & Innovation Support Program for Chongqing Overseas Returnees, China(CX2021046)

摘要:

金属锂具有超高理论比容量密度(3680 mA·h·g‒1)和低还原电位(‒3.04 V vs. SHE), 被认为是高能量密度电池负极材料的“圣杯”. 然而, 由于锂枝晶不可控生长和对电解质高反应性导致的库仑效率低、 循环寿命短及内短路等问题严重制约着金属锂负极的实用化进展. 在实际的电化学体系中, 集流体作为金属锂沉积/脱出的基底, 其表面性质对锂负极的循环稳定性起着至关重要的作用. 本文从负极、 集流体表面成分以及微结构设计两方面系统总结了构建三维亲锂骨架材料的改性策略. 利用金属、 金属氧化物、 杂原子掺杂、 聚合物材料及有机框架材料等高亲锂材料对集流体和负极的界面及结构进行针对性调控修饰, 可以有效调控金属锂的电沉积, 推进金属锂负极在高能量密度电池体系中的实用化进程.

关键词: 锂负极, 亲锂, 三维骨架, 锂枝晶

Abstract:

With its ultra-high theoretical specific capacity density(3680 mA·h·g-1) and low reduction potential(-3.04 V vs. SHE), lithium metal is considered the “holy grail” of anode for high energy density batteries. However, due to the uncontrolled growth of lithium dendrites and high reactivity to electrolytes, a series of problems, such as low coulomb efficiency, short cycle life and internal short circuit, seriously restrict the practical progress of lithium metal anode. In the practical electrochemical system, the surface properties of the current collector that is employed as the substrate for lithium metal deposition/stripping play an important role in the cyclic stability of the lithium anode. In this review, the modification strategies for constructing three-dimensional(3D) lithiophilic skeleton materials were systematically summarized from the aspects of surface composition and microstructure design for lithium anode and current collector. Utilizing high lithiophilic materials such as metal, metal oxide, doping heteroatoms, polymer materials, and metal-organic frame materials to tune and modify the interface and structure of the collector and anode, can effectively regulate the electrodeposition of lithium metal and promote the practical process of lithium metal anode in high energy density battery system.

Key words: Lithium anode, Lipophilic, Three-dimensional skeleton, Lithium dendrite

中图分类号: 

TrendMD: