高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220689.doi: 10.7503/cjcu20220689
• 综合评述 • 上一篇
收稿日期:
2022-10-31
出版日期:
2023-01-10
发布日期:
2022-12-12
通讯作者:
周亮,麦立强
E-mail:liangzhou@whut.edu.cn;mlq518@whut.edu.cn
作者简介:
第一联系人:共同第一作者 .
基金资助:
WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang(), MAI Liqiang(
)
Received:
2022-10-31
Online:
2023-01-10
Published:
2022-12-12
Contact:
ZHOU Liang, MAI Liqiang
E-mail:liangzhou@whut.edu.cn;mlq518@whut.edu.cn
Supported by:
摘要:
随着能源问题的日益突显, 开发新型多功能材料以满足能源存储与转换应用的需求变得尤为重要. 在众多功能材料中, 复杂中空结构材料由于其独特的结构和物理化学特性而备受关注. 本文综合评述了复杂中空结构材料的普适性构筑方法(硬模板法、 软模板法、 自模板法、 次序模板法和选择性刻蚀法)及在能源方面的应用(锂/钠/钾离子电池、 锂硫电池、 超级电容器、 电催化、 光催化及染料敏化电池等). 最后, 对复杂空心结构研究领域存在的问题及未来的发展方向进行了展望.
中图分类号:
TrendMD:
吴育才, 杜寰, 朱杰鑫, 许诺, 周亮, 麦立强. 复杂中空结构材料的构筑及能源应用. 高等学校化学学报, 2023, 44(1): 20220689.
WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang, MAI Liqiang. Intricate Hollow Structured Materials: Synthesis and Energy Applications. Chem. J. Chinese Universities, 2023, 44(1): 20220689.
Method | Feature | Strength | Weakness | Example |
---|---|---|---|---|
Hard⁃templating | Well controlled size, shell number, shell thickness, etc. | Simple, effective, and straightforward | Complex synthesis process | SiO2, carbon, polyaniline, TiO2, Fe3O4, SnO2, etc. |
Soft⁃templating | Micelles and vesicles as soft templates | Facile and convenient synthesis | Highly sensitive to the synthesis parameters | Especially useful for chemically and thermodynamically unstable materials |
Self⁃templating:ostwald ripening | Depending on material dissolution and re⁃deposition | Relatively simple synthesis | Relatively few examples | Cu2O, TiO2, SnO2, etc. |
Self⁃templating: galva⁃nic replacement | Based on the electronegativity difference of different metals | Rich and well⁃defined morphologies | Limited to metals, especially precious metals | Metal(especially precious metal) |
Self⁃templating: thermal induced hollowing | Depending on thermal treatment⁃induced matter relocation | Simple synthesis process, easy for scale up | Difficulty in delicate control of the structure | Various transition metal oxides, metal sulfides |
Sequential templating | The template with rich precursor acts as "sequential template" multiple times | Well controlled structure, relatively easy synthesis | — | Metal oxides, metal sulfides, metal phosphides, etc. |
Selective etching | The parent materials having “soft regions” and “hard regions” | Precise structure control | Highly dependent on synthetic conditions such as pH | SiO2, organosilica, polymer, carbon, Prussian blue, CoSn(OH)6, ZnSn(OH)6, etc. |
Table 1 Summary of different synthesis methods
Method | Feature | Strength | Weakness | Example |
---|---|---|---|---|
Hard⁃templating | Well controlled size, shell number, shell thickness, etc. | Simple, effective, and straightforward | Complex synthesis process | SiO2, carbon, polyaniline, TiO2, Fe3O4, SnO2, etc. |
Soft⁃templating | Micelles and vesicles as soft templates | Facile and convenient synthesis | Highly sensitive to the synthesis parameters | Especially useful for chemically and thermodynamically unstable materials |
Self⁃templating:ostwald ripening | Depending on material dissolution and re⁃deposition | Relatively simple synthesis | Relatively few examples | Cu2O, TiO2, SnO2, etc. |
Self⁃templating: galva⁃nic replacement | Based on the electronegativity difference of different metals | Rich and well⁃defined morphologies | Limited to metals, especially precious metals | Metal(especially precious metal) |
Self⁃templating: thermal induced hollowing | Depending on thermal treatment⁃induced matter relocation | Simple synthesis process, easy for scale up | Difficulty in delicate control of the structure | Various transition metal oxides, metal sulfides |
Sequential templating | The template with rich precursor acts as "sequential template" multiple times | Well controlled structure, relatively easy synthesis | — | Metal oxides, metal sulfides, metal phosphides, etc. |
Selective etching | The parent materials having “soft regions” and “hard regions” | Precise structure control | Highly dependent on synthetic conditions such as pH | SiO2, organosilica, polymer, carbon, Prussian blue, CoSn(OH)6, ZnSn(OH)6, etc. |
Fig.1 Schematic synthesis of multi⁃shell hollow spheres via hard⁃templating(A), TEM images of single⁃shell(B), double⁃shell(C) and triple⁃shell(D) TiO2 hollow spheres[47](B)—(D) Copyright 2014, Wiley-VCH.
Fig.2 TEM images of single⁃shell(A), double⁃shell(B), triple⁃shell(C), invaginated double⁃shell(D), endo⁃invaginated double⁃shell(E) and invaginated triple⁃shell(F) hollow carbon spheres[44]Copyright 2015, American Chemical Society.
Fig.3 Schematic synthesis of double⁃shell hollow spheres using porous hollow spheres as the hard templates(A), TEM images of double⁃shell TiO2 hollow spheres(B, C)[50](B), (C) Copyright 2005, Wiley-VCH.
Fig.4 Schematic illustration for the shell⁃by⁃shell soft⁃templating synthesis of MOF multi⁃shell hollow spheres(A), TEM images of MOF single⁃shell(B), double⁃shell(C) and triple⁃shell(D) hollow spheres[55]Copyright 2020, Wiley-VCH.
Fig.5 Schematic illustrations for the synthesis of (Cu2O@) n Cu2O(n=1—4) yolk@shell structures(A), TEM images of the(Cu2O@) n Cu2O with two(B) and three shells(C)[62]Copyright 2012, American Chemical Society.
Fig.6 Schematic synthesis of Au hollow shells via galvanic replacement(A), TEM images of Au hollow shells(B) and Au nanotubes(C)[64], schematic synthesis of noble metal nanotubes with co⁃axial, multiple walls(D), SEM image Au/Ag double⁃walled nanotubes(E)[66](A)—(C) Copyright 2002, American Chemical Society; (D), (E) Copyright 2004, Wiley-VCH.
Fig.7 Schematic illustration for the formation of γ⁃Fe2O3 solid spheres(A), hollow spheres(B), yolk@shell spheres(C), double⁃shell hollow spheres(D), and yolk@double shell spheres(E) via non⁃equilibrium heat treatment induced heterogeneous contraction[68]Copyright 2010, the Royal Society of Chemistry.
Fig.8 Schematic synthesis of Fe⁃Cr⁃O multi⁃shell hollow spheres(A), formation mechanism of Fe⁃Cr⁃O multi⁃shell hollow spheres(B), HAADF⁃STEM images and the corresponding EDS elemental mappings of Fe⁃Cr⁃O⁃3/1(C) and Fe⁃Cr⁃O⁃1/3(D)[76]Copyright 2022, the Royal Society of Chemistry.
Fig.10 Schematic illustration showing the synthesis of metal oxide multishelled hollow spheres via sequential templating[39]Copyright 2011, Wiley-VCH.
Fig.11 Schematic representation for fabrication of SiO2 multi⁃shell hollow spheres(A), TEM images of SiO2 multi⁃shell hollow spheres with two(B), four(C) and eight(D) shells[93]Copyright 2019, American Chemical Society.
Fig.12 SEM(A) and TEM(B) images of solid resin spheres, TEM images of hollow resin spheres with one(C), two(D), three(E), four(F), five(G), six(H) and seven(I) shells, schematic synthesis process of multi⁃shell hollow resin spheres(J)[95]Copyright 2017, American Chemical Society.
Fig.13 Schematic synthesis of single⁃shell, double⁃shell, and triple⁃shell hollow MIL⁃101 crystals(A), TEM images of single⁃shell(B), double⁃shell(C) and triple⁃shell(D) hollow MIL⁃101 crystals[98]Copyright 2017, Wiley-VCH.
Application | Material | Synthesis method | Advantages | Ref. |
---|---|---|---|---|
Lithium⁃ion battery | Si/CoFe2O4 | Sequential templating | Volume change buffering; reduced ion transport path | [ |
Sodium⁃ion battery | Na3(VOPO4)2F | Soft⁃templating | [ | |
Alkaline battery | NiS2 | Sequential templating | [ | |
Li⁃S battery | Double⁃shell hollow carbon spheres | Hard⁃templating | High S loading, soluble poly⁃ sulfides confinement | [ |
Supercapacitor | Carbon | Hard⁃templating | High specific surface area, more reactive sites, superior stability | [ |
MnO2@Co⁃Ni LDH | Self⁃templating | [ | ||
Co3O4/NiCo2O4 | Self⁃templating | [ | ||
Electrocatalysis | Ni⁃Fe LDH | Self⁃templating | Cascade reaction, high selec⁃ tivity, high catalyst loading | [ |
Mn⁃Co oxyphosphide | Self⁃templating | [ | ||
CoSe2/(NiCo)Se2 | Self⁃templating | [ | ||
Photocatalysis | ZnS⁃CdS | Self⁃templating | Architectural stability, multiple scattering of light, fast mass transfer | [ |
TiO2⁃Cu x O | Sequential templating | [ | ||
TiO2/SrTiO3 | Sequential⁃templating | [ | ||
Dye⁃sensitized solar cells | SiO2/TiO2 | Hard⁃templating | Better light harvesting, fast electron transport, high specific surface area | [ |
TiO2⁃SnO2 | Self⁃templating | [ | ||
ZnO | Sequential templating | [ |
Table 2 Typical intricate hollow structured materials and their application
Application | Material | Synthesis method | Advantages | Ref. |
---|---|---|---|---|
Lithium⁃ion battery | Si/CoFe2O4 | Sequential templating | Volume change buffering; reduced ion transport path | [ |
Sodium⁃ion battery | Na3(VOPO4)2F | Soft⁃templating | [ | |
Alkaline battery | NiS2 | Sequential templating | [ | |
Li⁃S battery | Double⁃shell hollow carbon spheres | Hard⁃templating | High S loading, soluble poly⁃ sulfides confinement | [ |
Supercapacitor | Carbon | Hard⁃templating | High specific surface area, more reactive sites, superior stability | [ |
MnO2@Co⁃Ni LDH | Self⁃templating | [ | ||
Co3O4/NiCo2O4 | Self⁃templating | [ | ||
Electrocatalysis | Ni⁃Fe LDH | Self⁃templating | Cascade reaction, high selec⁃ tivity, high catalyst loading | [ |
Mn⁃Co oxyphosphide | Self⁃templating | [ | ||
CoSe2/(NiCo)Se2 | Self⁃templating | [ | ||
Photocatalysis | ZnS⁃CdS | Self⁃templating | Architectural stability, multiple scattering of light, fast mass transfer | [ |
TiO2⁃Cu x O | Sequential templating | [ | ||
TiO2/SrTiO3 | Sequential⁃templating | [ | ||
Dye⁃sensitized solar cells | SiO2/TiO2 | Hard⁃templating | Better light harvesting, fast electron transport, high specific surface area | [ |
TiO2⁃SnO2 | Self⁃templating | [ | ||
ZnO | Sequential templating | [ |
Fig.14 TEM images of single⁃shell(A), double⁃shell(B) and triple⁃shell(C) V2O5 hollow spheres, discharge⁃charge profiles of triple⁃shell V2O5 hollow spheres at 1000 mA/g(D), cycling performances of triple⁃shell V2O5 hollow spheres and its control samples at 1000 mA/g(E)[122]Copyright 2016, Nature Publishing Group.
Fig.15 TEM image of branched hollow porous carbon(A) and cycling performance of the branched hollow porous carbon at 5 A/g(B)[105], SEM image(C), TEM image(D) and cycling performance(E) of the MnO2@Co⁃Ni LDH[106](A), (B) Copyright 2022, Elsevier; (C)—(E) Copyright 2019, Elsevier.
Fig.16 Schematic synthesis of single⁃shell and double⁃shell Ni⁃Fe LDH nanocages(A), TEM image of double⁃shell Ni⁃Fe LDH nanocages(B), and overpotentials of single⁃shell and double shell Ni⁃Fe LDH nanocages at 20 and 50 mA/cm2(C)[108]Copyright 2020, Wiley-VCH.
Fig.17 TEM images of single⁃shell(A), double⁃shell(B), and triple⁃shell(C) ZnS⁃CdS rhombic dodecahedral cages, J⁃V curves(D) and incident photon⁃to⁃current conversion efficiencies(E) of ZnS⁃CdS multi⁃shell rhombic dodecahedral cages[111]Copyright 2018, Elsevier.
Fig.18 Schematic illustration of light scattering in single⁃shell and double⁃shell SiO2/TiO2 hollow spheres(A), incident photon⁃to⁃current efficiency of DSSCs(B)[114]Copyright 2014, American Chemical Society.
1 | Wang G., Lu Z. L., Li Y., Li L. H., Ji H. F., Feteira A., Zhou D., Wang D. W., Zhang S. J., Reaney I. M., Chem. Rev., 2021, 121(10), 6124—6172 |
2 | Duffner F., Kronemeyer N., Tubke J., Leker J., Winter M., Schmuch R., Nat. Energy, 2021, 6(2), 123—134 |
3 | Tian Y. S., Zeng G. B., Rutt A., Shi T., Kim H., Wang J. Y., Koettgen J., Sun Y. Z., Ouyang B., Chen T., Lun Z. Y., Rong Z. Q., Persson K., Ceder G., Chem. Rev., 2021, 121(3), 1623—1669 |
4 | Li S. Q., Wang K., Zhang G. F., Li S. N, Xu Y. A., Zhang X. D., Zhang X., Zheng S. H., Sun X. Z., Ma Y. W., Adv. Funct. Mater., 2022, 32(23), 2200796 |
5 | Huang J., Yuan K., Chen Y. W., Adv. Funct. Mater., 2022, 32(4), 2108107 |
6 | Wu Y. C., Wei W., Yu R. H., Xia L. X., Hong X. F., Zhu J. X., Li J. T., Lv L., Chen W., Zhao Y., Zhou L., Mai L. Q., Adv. Funct. Mater., 2022, 32(17), 2110910 |
7 | Ma S., Yuan G. Z., Zhang Y., Yang N., Li Y. J., Chen Q., Energy Environ. Sci., 2022, 15(1), 13—55 |
8 | Ates B., Koytepe S., Ulu A., Gurses C., Thakur V. K., Chem. Rev., 2020, 120(17), 9304—9362 |
9 | Shen R. C., Ren D. D., Ding Y. N., Guan Y. T., Ng Y. H., Zhang P., Li X., Sci. China Mater., 2020, 63(11), 2153—2188 |
10 | Wang B., Ruan T. T., Chen Y., Jin F., Peng L., Zhou Y., Wang D. L., Dou S. X., Energy Storage Mater., 2020, 24, 22—51 |
11 | Xiao M., Wang Z. L., Lyu M. Q., Luo B., Wang S. C., Liu G., Cheng H. M., Wang L. Z., Adv. Mater., 2019, 31(38), 1801369 |
12 | Qi J., Lai X. Y., Wang J. Y., Tang H. J., Ren H., Yang Y., Jin Q., Zhang L. J., Yu R. B., Ma G. H., Su Z. G., Zhao H. J., Wang D., Chem. Soc. Rev., 2015, 44(19), 6749—6773 |
13 | Wang J. Y., Tang H. J., Wang H., Yu R. B., Wang D., Mater. Chem. Front., 2017, 1(3), 414—430 |
14 | Li Z., Song M., Zhu W. Y., Zhuang W. C., Du X. H., Tian L., Coord. Chem. Rev., 2021, 439, 213946 |
15 | Qiu T. J., Gao S., Liang Z. B., Wang D. G., Tabassum H., Zhong R. Q., Zou R. Q., Angew. Chem. Int. Ed., 2021, 60(32), 17314—17336 |
16 | Mohammadian⁃Sarcheshmeh H., Arazi R., Mazloum⁃Ardakani M., Renew. Sust. Energ. Rev., 2020, 134, 110249 |
17 | Zhu M. Y., Tang J. J., Wei W. J., Li S. J., Mater. Chem. Front., 2020, 4(4), 1105—1149 |
18 | Hu W. H., Zheng M. B., Xu B. Y., Wei Y., Zhu W., Li Q., Pang H., J. Mater. Chem. A, 2021, 9(7), 3880—3917 |
19 | Wei Y. Z., Yang N. L., Huang K. K., Wan J. W., You F. F., Yu R. B., Feng S. H., Wang D., Adv. Mater., 2020, 32(44), e2002556 |
20 | Liang J., Kou H. R., Ding S. J., Adv. Funct. Mater., 2020, 31(10), 2007801 |
21 | Bin D. S., Xu Y. S., Guo S. J., Sun Y. G., Cao A. M., Wan L. J., Acc. Chem. Res., 2021, 54(1), 221—231 |
22 | Xu W. J., Qing X., Liu S. L., Yang D. L., Dong X. C., Zhang Y. W., Small, 2022, 18(15), e2106511 |
23 | Zhao D., Yang N., Xu L., Du J., Yang Y., Wang D., Nano Res., 2022, 15(2), 739—757 |
24 | Yu L., Hu H., Wu H. B., Lou X. W., Adv. Mater., 2017, 29(15), 1604563 |
25 | Sun Y. G., Cao A. M., Chin. Sci. Bull., 2019, 64(34), 3607—3622 |
孙勇刚, 曹安民. 科学通报, 2019, 64(34), 3607—3622 | |
26 | Bai S. Y., Wang X. Y., Liu Q. L., Sun J. H., Liu J., Chin. Sci. Bull., 2019, 64(34), 3562—3576 |
白诗扬, 王昕尧, 刘庆隆, 孙继红, 刘健. 科学通报, 2019, 64(34), 3562—3576 | |
27 | Caruso F., Caruso R. A., Möhwald H., Science, 1998, 282(5391), 1111—1114 |
28 | Zhou L., Zhuang Z. C., Zhao H. H., Lin M. T., Zhao D. Y., Mai L. Q., Adv. Mater., 2017, 29(20), 1602914 |
29 | Xie F. X., Zhang L., Ye C., Jaroniec M., Qiao S. Z., Adv. Mater., 2019, 31(38), e1800492 |
30 | Wang Y. Z., Yang M., Ding Y. M., Li N. W., Yu L., Adv. Funct. Mater., 2021, 32(6), 2108681 |
31 | Stöber W., Fink A., Bohn E., J. Colloid Interf. Sci., 1968, 26(1), 62—69 |
32 | Zhang J., Guo Z. Q., Li Y., Pan S. H., Chen X. L., Xu J. Z., J. Mol. Liq., 2016, 223, 534—540 |
33 | Tong Z. W., Yang D., Li Z., Nan Y. H., Ding F., Shen Y. C., Jiang Z. Y., ACS Nano, 2017, 11(1), 1103—1112 |
34 | Mao D., Wan J. W., Wang J. Y., Wang D., Adv. Mater., 2019, 31(38), e1802874 |
35 | Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D., Angew. Chem. Int. Ed., 2013, 52(25), 6417—6420 |
36 | Yang X. D., Li Y. L., Zhang P. X., Sun L. N., Ren X. Z., Mi H. W., Carbon, 2020, 157, 70—79 |
37 | Lu A. H., Sun T., Li W. C., Sun Q., Han F., Liu D. H., Guo Y., Angew. Chem. Int. Ed., 2011, 50(49), 11765—11768 |
38 | Li X. C., Wang L., Shi J. H., Du N. X., He G. H., ACS Appl. Mater. Interfaces, 2016, 8(27), 17276—17283 |
39 | Lai X. Y., Li J., Korgel B. A., Dong Z. H., Li Z. M., Su F. B., Du J. A., Wang D., Angew. Chem. Int. Ed., 2011, 50(12), 2738—2741 |
40 | Peng S. J., Gong F., Li L. L., Yu D. S., Ji D. X., Zhang T. R., Hu Z., Zhang Z. Q., Chou S. L., Du Y. H., Ramakrishna S., J. Am. Chem. Soc., 2018, 140(42), 13644—13653 |
41 | Zhu S., Zhao N. Q., Li J. J., Deng X. Y., Sha J. W., He C. N., Nano Today, 2019, 29, 100796 |
42 | Doustkhah E., Hassandoost R., Khataee A., Luque R., Assadi M. H. N., Chem. Soc. Rev., 2021, 50(5), 2927—2953 |
43 | Jin Q. Q., Zhang C. Y., Wang W. N., Chen B. J., Ruan J., Qian H. S., Chem. Rec., 2020, 20(8), 882—892 |
44 | Zhang H. W., Yu M. H., Song H., Noonan O., Zhang J., Yang Y. N., Zhou L., Yu C. Z., Chem. Mater., 2015, 27(18), 6297—6304 |
45 | Wu H. J., Wu G. L., Ren Y. Y., Li X. H., Wang L. D., Chem. Eur. J., 2016, 22(26), 8864—8871 |
46 | Huang C. C., Huang W., Yeh C. S., Biomaterials, 2011, 32(2), 556—564 |
47 | Hwang S. H., Yun J., Jang J., Adv. Funct. Mater., 2014, 24(48), 7619—7626 |
48 | Lou X. W., Yuan C. L., Archer L. A., Small, 2007, 3(2), 261—265 |
49 | Lou X. W., Yuan C. L., Archer L. A., Adv. Mater., 2007, 19(20), 3328—3332 |
50 | Yang M., Ma J. , Zhang C. L., Yang Z. Z., Lu Y. F., Angew. Chem. Int. Ed., 2005, 44(41), 6727—6730 |
51 | Tian H., Liang J., Liu J., Adv. Mater., 2019, 31(50), e1903886 |
52 | Tan H. B, Li Y. Q., Kim J., Takei T., Wang Z. L., Xu X. T., Wang J., Bando Y., Kang Y. M., Tang J., Yamauchi Y., Adv. Sci., 2018, 5(7), 1800120 |
53 | Thompson B. R., Horozov T. S., Stoyanov S. D., Paunov V. N., J. Mater. Chem. A, 2019, 7(14), 8030—8049 |
54 | Xu H. L., Wang W. Z., Angew. Chem. Int. Ed., 2007, 46(9), 1489—1492 |
55 | Sun B., Zeng H. C., Part. Part. Syst. Char., 2020, 37(6), 2000101 |
56 | Lee J., Kim S. M., Lee I. S., Nano Today, 2014, 9(5), 631—667 |
57 | Yec C. C., Zeng H. C., J. Mater. Chem. A, 2014, 2(14), 4843—4851 |
58 | Anderson B. D., Tracy J. B., Nanoscale, 2014, 6(21), 12195—12216 |
59 | Weng W. S., Lin J., Du Y. C., Ge X. F., Zhou X. S., Bao J. C., J. Mater. Chem. A, 2018, 6(22), 10168—10175 |
60 | Yang H. G., Zeng H. C., J. Phys. Chem. B, 2004, 108(11), 3492—3495 |
61 | Zhang L., Wang H., J. Phys. Chem. C, 2011, 115(38), 18479—18485 |
62 | Yec C. C., Zeng H. C., Chem. Mater., 2012, 24(10), 1917—1929 |
63 | Zhuang C. Q., Qi H. Y., Cheng X., Chen G., Gao C. L., Wang L. H., Sun S. R., Zou J., Han X. D., Angew. Chem. Int. Ed., 2019, 58(51), 18627—18633 |
64 | Sun Y. G., Mayers B. T., Xia Y. N., Nano Lett., 2002, 2(5), 481—485 |
65 | Sun Y. G., Xia Y. N., Adv. Mater., 2004, 16(3), 264—268 |
66 | Sun Y. G., Wiley B., Li Z. Y., Xia Y. N., J. Am. Chem. Soc., 2004, 126(30), 9399—9406 |
67 | González E., Arbiol J., Puntes V. F., Science, 2011, 334(6061), 1377—1380 |
68 | Guan J. G., Mou F. Z., Sun Z. G., Shi W. D., Chem. Commun., 2010, 46(35), 6605—6607 |
69 | Cho W., Lee Y. H., Lee H. J., Oh M., Adv. Mater., 2011, 23(15), 1720—1723 |
70 | Guo W. X., Sun W. W., Wang Y., ACS Nano, 2015, 9(11), 11462—11471 |
71 | Guo W. X., Sun W. W., Lv L. P., Kong S. F., Wang Y., ACS Nano, 2017, 11(4), 4198—4205 |
72 | Zhou L., Zhao D. Y., Lou X. W., Adv. Mater., 2012, 24(6), 745—748 |
73 | Zhang G. Q., Yu L., Wu H. B., Hoster H. E., Lou X. W., Adv. Mater., 2012, 24(34), 4609—4613 |
74 | Shen L. F., Yu L., Yu X. Y., Zhang X. G., Lou X. W., Angew. Chem. Int. Ed., 2015, 54(6), 1868—1872 |
75 | Lu Y., Nai J. W., Lou X. W., Angew. Chem. Int. Ed., 2018, 57(11), 2899—2903 |
76 | Arpagaus C., Collenberg A., Rutti D., Assadpour E., Jafari S. M., Int. J. Pharm., 2018, 546(1/2), 194—214 |
77 | Singh A., Van Den Mooter G., Adv. Drug Deliv. Rev., 2016, 100, 27—50 |
78 | Zhou L., Xu H. Y., Zhang H. W., Yang J., Hartono S. B., Qian K., Zou J., Yu C. Z., Chem. Commun., 2013, 49(77), 8695—8697 |
79 | Padashbarmchi Z., Hamidian A. H., Zhang H. W., Zhou L., Khorasani N., Kazemzad M., Yu C. Z., RSC Advances, 2015, 5(14), 10304—10309 |
80 | Li R. X., Zhou Y. J., Liu C., Pei C. C., Shu W. K., Zhang C. Q., Liu L. Z., Zhou L., Wan J. J., Angew. Chem. Int. Ed., 2021, 60(22), 12504—12512 |
81 | Fu S. D., Yu Q., Liu Z. H., Hu P., Chen Q., Feng S. H., Mai L. Q., Zhou L., J. Mater. Chem. A, 2019, 7(18), 11234—11240 |
82 | Sun X. R., Zhang H. W., Zhou L., Huang X. D., Yu C. Z., Small, 2016, 12(27), 3732—3737 |
83 | Li L., Chen W., Luo W., Xiao Z. T., Zhao Y. L., Owusu K. A., Liu Z. H., Zhou L., Mai L. Q., Energy Technol., 2019, 7(8), 1801160 |
84 | He R. H., Li S. D., Liu H. Y., Zhou L., Mater. Chem. Front., 2022, 6(14), 1903—1911 |
85 | Hong Y. J., Son M. Y., Kang Y. C., Adv. Mater., 2013, 25(16), 2279—2283 |
86 | Ko Y. N., Chan Kang Y., Park S. B., Nanoscale, 2013, 5(19), 8899—8903 |
87 | Sim C. M., Choi S. H., Kang Y. C., Chem. Commun., 2013, 49(53), 5978—5980 |
88 | Chen Z., Xu L. H., Chen Q., Hu P., Liu Z. H., Yu Q., Zhu T., Liu H. C., Hu G. W., Zhu Z. Z., Zhou L., Mai L. Q., J. Mater. Chem. A, 2019, 7(12), 6740—6746 |
89 | Dong Z. H., Lai X. Y., Halpert J. E., Yang N. L., Yi L. X., Zhai J., Wang D., Tang Z. Y., Jiang L., Adv. Mater., 2012, 24(8), 1046—1049 |
90 | Dong Z. H., Ren H., Hessel C. M., Wang J. Y., Yu R. B., Jin Q., Yang M., Hu Z. D., Chen Y. F., Tang Z. Y., Zhao H. J., Wang D., Adv. Mater., 2014, 26(6), 905—909 |
91 | Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nature Energy, 2016, 1(5), 16050 |
92 | Wong Y. J., Zhu L. F., Teo W. S., Tan Y. W., Yang Y. H., Wang C., Chen H. Y., J. Am. Chem. Soc., 2011, 133(30), 11422—11425 |
93 | Han Y. D., Guo Z. L., Teng S. Y., Xia H. B., Wang D. Y., Han M. Y., Yang W. S., Chem. Mater., 2019, 31(18), 7470—7477 |
94 | Teng Z. G., Su X. D., Zheng Y. Y., Zhang J. J., Liu Y., Wang S. J., Wu J., Chen G. T., Wang J. D., Zhao D. Y., Lu G. M., J. Am. Chem. Soc., 2015, 137(24), 7935—7944 |
95 | Bin D. S., Chi Z. X., Li Y. T., Zhang K., Yang X. Z., Sun Y. G., Piao J. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2017, 139(38), 13492—13498 |
96 | Hu M., Furukawa S., Ohtani R., Sukegawa H., Nemoto Y., Reboul J., Kitagawa S., Yamauchi Y., Angew. Chem. Int. Ed., 2012, 51(4), 984—988 |
97 | Hu M., Belik A. A., Imura M., Yamauchi Y., J. Am. Chem. Soc., 2013, 135(1), 384—391 |
98 | Liu W. X., Huang J. J., Yang Q., Wang S. J., Sun X. M., Zhang W. N., Liu J. F., Huo F. W., Angew. Chem. Int. Ed., 2017, 56(20), 5512—5516 |
99 | Wang L. L., Tang K. B., Liu Z. P., Wang D. K., Sheng J., Cheng W., J. Mater. Chem., 2011, 21(12), 4352—4357 |
100 | Wang Z. Y., Wang Z. C., Wu H. B., Lou X. W., Sci. Rep., 2013, 3, 1391 |
101 | Zhao J. L., Wang J. Y., Bi R. Y., Yang M., Wan J. W., Jiang H. Y., Gu L., Wang D., Angew. Chem. Int. Ed., 2021, 60(49), 25719—25722 |
102 | Qi Y. R., Tong Z. Z., Zhao J. M., Ma L., Wu T. P., Liu H. Z., Yang C., Lu J., Hu Y. S., Joule, 2018, 2(11), 2348—2363 |
103 | Li D. W., Zhao X. X., Yu R. B., Wang B., Wang H., Wang D., Inorg. Chem. Front., 2018, 5(3), 535—540 |
104 | Zhang C. F., Wu H. B., Yuan C. Z., Guo Z. P., Lou X. W., Angew. Chem. Int. Ed., 2012, 51(38), 9592—9595 |
105 | Ji L. L., Zhu Y. Y., Teng X., Wang T., Wang S., Meyer T. J., Chen Z. F., Sci. Bull., 2022, 67(4), 398—407 |
106 | Luo H., Wang B., Liu T., Jin F., Liu R., Xu C. Y., Wang C. H., Ji K. M., Zhou Y., Wang D. L., Dou S. X., Energy Storage Mater, 2019, 19, 370—378 |
107 | Hu H., Guan B. Y., Xia B. Y., Lou X. W., J. Am. Chem. Soc., 2015, 137(16), 5590—5595 |
108 | Zhang J. T., Yu L., Chen Y., Lu X. F., Gao S. Y., Lou X. W., Adv. Mater., 2020, 32(16), e1906432 |
109 | Guan B. Y., Yu L., Lou X. W., Angew. Chem. Int. Ed., 2017, 56(9), 2386—2389 |
110 | Park S. K., Kim J. K., Kang Y. C., J. Mater. Chem. A, 2017, 5(35), 18823—18830 |
111 | Zhang P., Guan B. Y., Yu L., Lou X. W., Chem, 2018, 4(1), 162—173 |
112 | Wei Y. Z., Wan J. W., Yang N. L., Yang Y., Ma Y. W., Wang S. C., Wang J. R., Yu R. B., Gu L., Wang L. H., Wang L. Z., Huang W., Wang D., Natl Sci. Rev., 2020, 7(11), 1638—1646 |
113 | Jiang S. Y., Zhao K., Al⁃Mamun M., Zhong Y. L., Liu P. R., Yin H. J., Jiang L. X., Lowe S., Qi J., Yu R. B., Wang D., Zhao H. J., Inorg. Chem. Front., 2019, 6(7), 1667—1674 |
114 | Lee J., Hwang S. H., Yun J., Jang J., ACS Appl. Mater. Interfaces, 2014, 6(17), 15420—15426 |
115 | Qian J. F., Liu P., Xiao Y., Jiang Y., Cao Y. L., Ai X. P., Yang H. X., Adv. Mater., 2009, 21(36), 3663—3667 |
116 | Chen Y., Wang T. Y., Tian H. J., Su D. W., Zhang Q., Wang G. X., Adv. Mater., 2021, 33(29), e2003666 |
117 | Weiss M., Ruess R., Kasnatscheew J., Levartovsky Y., Levy N. R., Minnmann P., Stolz L., Waldmann T., Wohlfahrt⁃Mehrens M., Aurbach D., Winter M., Ein⁃Eli Y., Janek J., Adv. Energy Mater., 2021, 11(33), 2101126 |
118 | Peng L., Peng H. R., Liu Y., Wang X., Hung C. T., Zhao Z. W., Chen G., Li W., Mai L. Q., Zhao D. Y., Sci. Adv., 2021, 7(45), eabi7403 |
119 | Zhu X. B., Tang J. Y., Huang H. M., Lin T. G., Luo B., Wang L. Z., Sci. Bull., 2020, 65(6), 496—512 |
120 | Li Z., Wu H. B., Lou X. W., Energy Environ. Sci., 2016, 9(10), 3061—3070 |
121 | Li D. J., Gong B. B., Cheng X. L., Ling F. X., Zhao L. G., Yao Y., Ma M. Z., Jiang Y., Shao Y., Rui X. H., Zhang W., Zheng H., Wang J. B., Ma C., Zhang Q. B., Yu Y., ACS Nano, 2021, 15(12), 20607—20618 |
122 | Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nat. Energy, 2016, 1(5), 16050 |
123 | Wang F., Wang J. Y., Ren H., Tang H. J., Yu R. B., Wang D., Inorg. Chem. Front., 2016, 3(3), 365—369 |
124 | Ma Y. T., Liu P. F., Xie Q. S., Zhang G. B., Zheng H. F., Cai Y. X., Li Z., Wang L. S., Zhu Z. Z., Mai L. Q., Peng D. L., Nano Energy, 2019, 59, 184—196 |
125 | Luo W., Chen X. Q., Xia Y., Chen M., Wang L. J., Wang Q. Q., Li W., Yang J. P., Adv. Energy Mater., 2017, 7(24), 1701083 |
126 | Liu N. L., Lu Z. D., Zhao J., Mcdowell M. T., Lee H. W., Zhao W. T., Cui Y., Nature Nanotechnology, 2014, 9(3), 187—192 |
127 | Bin D. S., Li Y. M., Sun Y. G., Duan S. Y., Lu Y. X., Ma J. M., Cao A. M., Hu Y. S., Wan L. J., Adv. Energy Mater., 2018, 8(26), 1800855 |
128 | Bin D. S., Chi Z. X., Li Y., Zhang K., Yang X., Sun Y. G., Piao J. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2017, 139(38), 13492—13498 |
129 | Huang S. Z., Wang Z. H., Lim Y. V., Wang Y., Li Y., Zhang D. H., Yang H. Y., Adv. Energy Mater., 2021, 11(10), 2003689 |
130 | Zheng Z. J., Ye H., Guo Z. P., Energy Environ. Sci., 2021, 14(4), 1835—1853 |
131 | Li S. Q., Fan Z. Y., Energy Storage Mater., 2021, 34, 107—127 |
132 | Zhou G. M., Zhao Y. B., Manthiram A., Adv. Energy Mater., 2015, 5(9),1402263 |
133 | Zhang H. W., Zhou L., Huang X. D., Song H., Yu C. Z., Nano Res., 2016, 9(12), 3725—3734 |
134 | Salhabi E. H. M., Zhao J. L., Wang J. Y., Yang M., Wang B., Wang D., Angew. Chem. Int. Ed., 2019, 58(27), 9078—9082 |
135 | Zhang J. T., Hu H., Li Z., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(12), 3982—3986 |
136 | Kumar S., Saeed G., Zhu L., Hui K. N., Kim N. H., Lee J. H., Chem. Eng. J., 2021, 403, 126352 |
137 | Chatterjee D. P., Nandi A. K., J. Mater. Chem. A, 2021, 9(29), 15880—15918 |
138 | He Y., Xiang K. X., Wang Y. F., Zhou W., Zhu Y. R., Xiao L., Chen W. H., Chen X. H., Chen H., Cheng H., Lu Z. G., Carbon, 2019, 154, 330—341 |
139 | Andikaey Z., Ensafi A. A., Rezaei B., Hu J. S., Electrochim. Acta, 2022, 420, 140437 |
140 | Ren Y. W., Yu C., Tan X. Y., Huang H. L., Wei Q. B., Qiu J. S., Energy Environ. Sci., 2021, 14(3), 1176—1193 |
141 | Chen F. Y., Wu Z. Y., Adler Z., Wang H. T., Joule, 2021, 5(7), 1704—1731 |
142 | Zhao C. X., Liu J. N., Wang J., Ren D., Li B. Q., Zhang Q., Chem. Soc. Rev., 2021, 50(13), 7745—7778 |
143 | Wang L., Wan J. W., Wang J. Y., Wang D., Small Struct., 2021, 2(1), 2000041 |
144 | Fang L., Xie Y. P., Yang Y., Zhu B. Y., Wang Y. Y., Liu M. X., Zhao K. N., Zhao H. B., Zhang J. J., ACS Appl. Energy Mater., 2020, 3(1), 309—318 |
145 | Sun H. M., Xu X. B., Yan Z. H., Chen X., Cheng F. Y., Weiss P. S., Chen J., Chem. Mater., 2017, 29(19), 8539—8547 |
146 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
147 | Wang Y. C., Ren B. Y., Ou J. Z., Xu K., Yang C. H., Li Y. X., Zhang H. J., Sci. Bull., 2021, 66(12), 1228—1252 |
148 | Zhang F. F., Zhu Y. L., Lin Q., Zhang L., Zhang X. W., Wang H. T., Energy Environ. Sci., 2021, 14(5), 2954—3009 |
149 | Wang F. L., Fang R. Q., Zhao X., Kong X. P., Hou T. T., Shen K., Li Y. W., ACS Nano, 2022, 16(3), 4517—4527 |
150 | Wei Y. Z., Wan J. W., Wang J. Y, Zhang X., Yu R. B., Yang N. L., Wang D., Small, 2021, 17(22), 2005345 |
151 | Zhang P., Wang S. B., Guan B. Y., Lou X. W., Energy Environ. Sci., 2019, 12(1), 164—168 |
152 | Kokkonen M., Talebi P., Zhou J., Asgari S., Soomro S. A., Elsehrawy F., Halme J., Ahmad S., Hagfeldt A., Hashmi S. G., J. Mater. Chem. A, 2021, 9(17), 10527—10545 |
153 | Hashemi S. A., Ramakrishna S., Aberle A. G., Energy Environ. Sci., 2020, 13(3), 685—743 |
154 | Wang J. Y., Cui Y., Wang D., Adv. Mater., 2019, 31(38), e1801993 |
[1] | 王鹏飞, 富文豪, 孙少妮, 曹学飞, 袁同琦. 纤维素纳米晶模板法制备多级孔炭材料及其电化学性能[J]. 高等学校化学学报, 2023, 44(2): 20220497. |
[2] | 朱科润, 任雯萱, 张威, 李伟. 单分散中空介孔结构的盐模板合成及形貌调控[J]. 高等学校化学学报, 2023, 44(1): 20220607. |
[3] | 沈欣怡, 张森, 王树涛, 宋永杨. 聚合物中空微球的合成策略[J]. 高等学校化学学报, 2023, 44(1): 20220627. |
[4] | 杨霁野, 孙大吟, 王妍, 谷安祺, 叶一兰, 丁书江, 杨振忠. 若干典型中空结构材料的模板合成与应用进展[J]. 高等学校化学学报, 2023, 44(1): 20220665. |
[5] | 叶祖洋, 殷亚东. 基于刻蚀反应的纳米结构空心化[J]. 高等学校化学学报, 2023, 44(1): 20220656. |
[6] | 李姿若, 张红娟, 朱国勋, 夏伟, 汤静. 负载酞菁铁的氮掺杂中空碳球的电催化氧还原性能[J]. 高等学校化学学报, 2023, 44(1): 20220677. |
[7] | 黄田野, 杨梅, 王江艳, 张少军, 杜江, 王丹. 铁酸镍/碳复合中空多壳层结构的制备及吸波性能[J]. 高等学校化学学报, 2023, 44(1): 20220276. |
[8] | 魏雨晨, 武婷婷, 杨磊, 金碧玉, 李宏强, 何孝军. 萘基相互连接的多孔碳纳米囊的制备及超电容性能[J]. 高等学校化学学报, 2021, 42(9): 2852. |
[9] | 谢璠, 陈珊珊, 卓龙海, 陆赵情, 高坤, 代啓阳. 聚对二甲苯纳米纤维阵列的CVD液晶模板法制备及降解性能[J]. 高等学校化学学报, 2021, 42(8): 2643. |
[10] | 丁嘉乐, 金兰, 崔增多, 张海博, 张云鹤, 姜振华. 具有双交联网络结构的纳米复合材料的制备及介电性能[J]. 高等学校化学学报, 2021, 42(6): 2015. |
[11] | 高娟, 孙全虎, 黄长水. 石墨炔纳米材料的制备及在电化学能源中的应用[J]. 高等学校化学学报, 2021, 42(5): 1501. |
[12] | 徐安琪, 李彬, 杜芳林. 有序介孔TiO2的合成及光解水产氢应用[J]. 高等学校化学学报, 2021, 42(4): 978. |
[13] | 佘沛鸿, 徐文洲, 关卜源. 大孔道介孔氧化硅/碳基纳米材料的设计合成与应用[J]. 高等学校化学学报, 2021, 42(3): 671. |
[14] | 张淼, 彭金磊, 刘映, 刘芳君, 马伟, 魏华. 多价环状模板法合成交联胶束和类环胶体[J]. 高等学校化学学报, 2021, 42(11): 3526. |
[15] | 宋文尧, 周张浪, 杨鑫莉, 陈岚, 葛广路. 介孔二氧化硅对映选择性吸附的手性印迹调控[J]. 高等学校化学学报, 2021, 42(10): 3144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||