高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (3): 401-410.doi: 10.7503/cjcu20190671
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
张敏,刘欢
收稿日期:
2019-12-14
出版日期:
2020-03-10
发布日期:
2020-01-10
通讯作者:
刘欢
作者简介:
刘 欢, 女, 博士, 教授, 主要从事纤维的动态浸润及液体可控输运研究. E-mail: liuh@buaa.edu.cn
基金资助:
ZHANG Min,LIU Huan
Received:
2019-12-14
Online:
2020-03-10
Published:
2020-01-10
Contact:
Huan LIU
Supported by:
摘要:
量子点发光二极管(QLED)由于具有显色性好、 色纯度高和性能稳定等特点而受到广泛关注, 可用于制备具有超薄结构和柔性结构的显示器件. 量子点(QDs)层是QLED器件的核心发光层, 制备高质量的图案化QD薄膜对于提高QLED器件性能至关重要. 本文综述了近年来溶液法制备QD薄膜的研究进展, 探讨了目前主要使用的各种溶液法的优势和前景, 并对最近新发展的纤维辅助的溶液可控转移制备QD薄膜方法的优势和发展前景进行了评述.
中图分类号:
张敏, 刘欢. 溶液法制备图案化量子点薄膜的研究进展[J]. 高等学校化学学报, 2020, 41(3): 401-410.
ZHANG Min, LIU Huan. Research Processes in Fabricating Micro-patterned Quantum Dot Films by Solution Processes [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 401-410.
Fig.1 Luminescent material QDs[18] QDs with different chemical compositions show different color luminescences; and QDs with different sizes show different color luminescences. Copyright 2009, American Chemical Society.
Fig.2 QLED device, the QD layer is a light emitting layer[50] (A) QLED device structure; (B) QD films; (C) QD core-shell structure and surface ligand. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.4 Preparation of patterned QD films by inkjet printing[13,31,32] (A1), (A2) Inkjet printing schematics and related array patterns, Copyright 2016, Society for Information Display; (B1)—(B3) the green and red QLED arrays by inkjet printing, Copyright 2015, American Chemical Society; (C1)—(C3) QD array and single pattern 3D topography by inkjet printing, Copyright 2016, American Chemical Society.
Fig.5 Preparation of QD patterns by transfer printing[12,36] (A) Monochrome QDs film prepared by transfer printing, Copyright 2008, American Chemical Society; (B) high-resolution QD pattern by intaglio transfer printing, Copyright 2015, Nature Publishing Group.
Fig.6 Preparation of QD films by other methods[15,37] (A) Direct 3D printing of QLED; (B) QLED prepared by 3D printing, Copyright 2014, American Chemical Society; (C) preparation of QD films by mist deposition, Copyright 2008, American Institute of Physics.
Fig.7 Fibrous controllable liquid transfer for preparation of the ultrasmooth QD films[49] (A) Schematic cartoons of the dynamic balance of QDs during the solution transfer process guided by the conical fibers; (B) Fluorescence microscope images of the as-prepared green QD film under UV irradiation; (C) the RMS(the root mean squared roughnesses) value of the QD film is about 1 nm; (D)—(F) electroluminescent images of the green, red, and blue QLED devices, respectively. Copyright 2018, American Chemical Society.
Fig.8 Preparation of QD films guided by the fibrous liquid bridge[50] (A) Schematic illustration of the liquid transfer process guided by the fibrous liquid bridge; (B) the as-prepared white QLED operated at 4 V and the corresponding normalized electroluminescence spectrum; (C) the printing area(cm2) and liquid consumption volume(μL) shows a quasi-linear correlation; (D) as-prepared green QD films with areas of 2, 4, 6, 8, 10, and 12 cm2, showing a rather fair homogeneous distribution and well-defined profiles. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.10 Advances in device efficiency EQE in recent years[49] EQE peak change of QLED devices from 2012 to 2018. Copyright 2018, American Chemical Society.
[1] | Peng X ., Nano Res., 2010, 2( 6), 425— 447 |
[2] | Sun Q., Wang Y. A., Li L. S., Wang D., Zhu T., Xu J., Yang C., Li Y ., Nat. Photon., 2007, 1( 12), 717— 722 |
[3] | Mu Y. X., A L., Zhuang Q. F., Wang Y., Ni Y. N ., Chem. J. Chinese Universities, 2019, 40( 4), 693— 697 |
( 沐亚新, 阿丽, 庄欠粉, 王勇, 倪永年 . 高等学校化学学报, 2019, 40( 4), 693— 697 | |
[4] | Zheng S., Liu Y., Chen P. P., Xing Y. C., Huang C. B ., Chem. J. Chinese Universities, 2019, 40( 9), 1866— 1872 |
( 郑姗, 刘洋, 陈飘飘, 邢怡晨, 黄朝表 . 高等学校化学学报, 2019, 40( 9), 1866— 1872 | |
[5] | Chang Y., Liu N., Liu H., Yang Y., Zhao Y., Li Y., Yuan H ., Chem. Res. Chinese Universities, 2015, 31( 4), 514— 518 |
[6] | Fang X., Zheng J., Yan G ., Chem. Res. Chinese U., 2016, 32( 6), 917— 923 |
[7] | Nakamura S., Mukai T., Senoh M ., Appl. Phys. Lett., 1994, 64( 13), 1687— 1689 |
[8] | Kim B. H., Nam S., Oh N., Cho S. Y., Yu K. J., Lee C. H., Zhang J., Deshpande K., Trefonas P., Kim J. H., Lee J., Shin J. H., Yu Y., Lim J. B., Won S. M., Cho Y. K., Kim N. H., Seo K. J., Lee H., Kim T. I., Shim M., Rogers J. A ., ACS Nano, 2016, 10( 5), 4920— 4925 |
[9] | Zhang L., Liu H., Zhao Y., Sun X., Wen Y., Guo Y., Gao X., Di C. A., Yu G., Liu Y ., Adv. Mater., 2012, 24( 3), 436— 440 |
[10] | Tang C. W., Van Slyke S. A ., Appl. Phys. Lett., 1987, 51( 12), 913— 915 |
[11] | Cho H., Kwak J., Lim J., Park M., Lee D., Bae W. K., Kim Y. S., Char K., Lee S., Lee C ., ACS Appl. Mater. Interfaces, 2015, 7( 20), 10828— 10833 |
[12] | Kim L., Anikeeva P., Coe-Sullivan S., Steckel J., Bawendi M., Bulović V ., Nano Lett., 2008, 8( 12), 4513— 4517 |
[13] | Jiang C., Zhong Z., Liu B., He Z., Zou J., Wang L., Wang J., Peng J., Cao Y ., ACS Appl. Mater. Interfaces, 2016, 8( 39), 26162— 26168 |
[14] | Cho K. S., Lee E. K., Joo W. J., Jang E., Kim T. H., Lee S. J., Kwon S. J., Han J. Y., Kim B. K., Choi B. L., Kim J. M ., Nat. Photon., 2009, 3( 6), 341— 345 |
[15] | Zhu T., Shanmugasundaram K., Price S. C., Ruzyllo J., Zhang F., Xu J., Mohney S. E., Zhang Q., Wang A. Y ., Appl. Phys. Lett., 2008, 92( 2), 023111 |
[16] | Wang X., Li W., Sun K ., J. Mater. Chem., 2011, 21, 8558— 8565 |
[17] | Shirasaki Y., Supran G. J., Bawendi M. G., Bulović V ., Nat. Photon., 2012, 7( 1), 13— 23 |
[18] | Anikeeva P. O., Halpert J. E., Bawendi M. G., Bulović V ., Nano Lett., 2009, 9( 7), 2532— 2536 |
[19] | Dai X., Deng Y., Peng X., Jin Y ., Adv. Mater., 2017, 29( 14), 1607022 |
[20] | Qian L., Zheng Y., Xue J., Holloway P. H ., Nat. Photon., 2011, 5( 9), 543— 548 |
[21] | Won Y. H., Cho O., Kim T., Chung D. Y., Kim T., Chung H., Jang H., Lee J., Kim D., Jang E ., Nature, 2019, 575( 7784), 634— 638 |
[22] | Cao Y., Wang N., Tian H., Guo J., Wei Y., Chen H., Miao Y., Zou W., Pan K., He Y., Cao H., Ke Y., Xu M., Wang Y., Yang M., Du K., Fu Z., Kong D., Dai D., Jin Y., Li G., Li H., Peng Q., Wang J., Huang W ., Nature, 2018, 562( 7726), 249— 253 |
[23] | Shi Y., Wu W., Dong H., Li G., Xi K., Divitini G., Ran C., Yuan F., Zhang M., Jiao B., Hou X., Wu Z ., Adv. Mater., 2018, 30( 25), e1800251 |
[24] | Han D., Imran M., Zhang M., Chang S., Wu X. G., Zhang X., Tang J., Wang M., Ali S., Li X., Yu G., Han J., Wang L., Zou B., Zhong H ., ACS Nano, 2018, 12( 8), 8808— 8816 |
[25] | Wang Z., Yuan F., Li X., Li Y., Zhong H., Fan L., Yang S ., Adv. Mater., 2017, 29( 37), 1702910 |
[26] | Yuan F., Yuan T., Sui L., Wang Z., Xi Z., Li Y., Li X., Fan L., Tan Z., Chen A., Jin M., Yang S ., Nat. Commun., 2018, 9( 1), 2249 |
[27] | Bae W. K., Kwak J., Lim J., Lee D., Nam M. K., Char K., Lee C., Lee S ., Nano Lett., 2010, 10( 7), 2368— 2373 |
[28] | Dai X., Zhang Z., Jin Y., Niu Y., Cao H., Liang X., Chen L., Wang J., Peng X ., Nature, 2014, 515( 7525), 96— 99 |
[29] | Manders J. R., Qian L., Titov A., Hyvonen J., Tokarz-Scott J., Acharya K. P., Yang Y., Cao W., Zheng Y., Xue J., Holloway P. H ., J. Soc. Inf. Display, 2015, 23( 11), 523— 528 |
[30] | Wang L., Lin J., Hu Y., Guo X., Lv Y., Tang Z., Zhao J., Fan Y., Zhang N., Wang Y., Liu X ., ACS Appl. Mater. Interfaces, 2017, 9( 44), 38755— 38760 |
[31] | Han J., Ko D., Park M., Roh J., Jung H., Lee Y., Kwon Y., Sohn J., Bae W. K., Chin B. D., Lee C ., J. Soc. Inf. Display, 2016, 24( 9), 545— 551 |
[32] | Kim B. H., Onses M. S., Lim J. B., Nam S., Oh N., Kim H., Yu K. J., Lee J. W., Kim J. H., Kang S. K., Lee C. H., Lee J., Shin J. H., Kim N. H., Leal C., Shim M., Rogers J. A ., Nano Lett., 2015, 15( 2), 969— 973 |
[33] | Liu Y., Li F., Xu Z., Zheng C., Guo T., Xie X., Qian L., Fu D., Yan X ., ACS Appl. Mater. Interfaces, 2017, 9( 30), 25506— 25512 |
[34] | Jiang C., Mu L., Zou J., He Z., Zhong Z., Wang L., Xu M., Wang J., Peng J., Cao Y ., Sci. China Chem., 2017, 60( 10), 1349— 1355 |
[35] | Kim T. H., Cho K. S., Lee E. K., Lee S. J., Chae J., Kim J. W., Kim D. H., Kwon J. Y., Amaratunga G., Lee S. Y., Choi B. L., Kuk Y., Kim J. M., Kim K ., Nat. Photon., 2011, 5( 3), 176— 182 |
[36] | Choi M. K., Yang J., Kang K., Kim D. C., Choi C., Park C., Kim S. J., Chae S. I., Kim T. H., Kim J. H., Hyeon T., Kim D. H ., Nat. Commun., 2015, 6, 7149 |
[37] | Kong Y. L., Tamargo I. A., Kim H., Johnson B. N., Gupta M. K., Koh T. W., Chin H. A., Steingart D. A., Rand B. P., McAlpine M. C ., Nano Lett., 2014, 14( 12), 7017— 7123 |
[38] | Princen H ., J. Colloid Interf. Sci., 1969, 30( 1), 69— 75 |
[39] | Princen H ., J. Colloid Interf. Sci., 1969, 30( 3), 359— 371 |
[40] | Princen H ., J. Colloid Interf. Sci., 1970, 34( 2), 171— 184 |
[41] | Duprat C., Protière S., Beebe A. Y., Stone H. A ., Nature, 2012, 482( 7386), 510— 513 |
[42] | Huang J. Y., Lo Y. C., Niu J. J., Kushima A., Qian X., Zhong L., Mao S. X., Li J ., Nat. Nanotechnol., 2013, 8( 4), 277— 281 |
[43] | Wang Q., Su B., Liu H., Jiang L ., Adv. Mater., 2014, 26( 28), 4889— 4894 |
[44] | Yamamoto T., Meng Q., Liu H., Jiang L., Doi M., ., Langmuir, 2016, 32(13), 3262—3268 |
[45] | Wang Q., Meng Q., Wang P., Chen M., Liu H., Jiang L ., ACS Nano, 2014, 8( 9), 8757— 8764 |
[46] | Wang Q., Meng Q., Wang P., Liu H., Jiang L ., ACS Nano, 2015, 9( 4), 4362— 4370 |
[47] | Lin F. J., Guo C., Chuang W. T., Wang C. L., Wang Q., Liu H., Hsu C. S., Jiang L ., Adv. Mater., 2017, 29( 34), 1606987 |
[48] | Meng L., Bian R., Guo C., Xu B., Liu H., Jiang L ., Adv. Mater., 2018, 30( 25), e1706938 |
[49] | Zhang M., Hu B., Meng L., Bian R., Wang S., Wang Y., Liu H., Jiang L ., J. Am. Chem. Soc., 2018, 140( 28), 8690— 8695 |
[50] | Li X., Hu B., Zhang M., Wang X., Chen L., Wang A., Wang Y., Du Z., Jiang L., Liu H ., Adv. Mater., 2019,e1904610 |
[51] | Mashford B. S., Stevenson M., Popovic Z., Hamilton C., Zhou Z., Breen C., Steckel J., Bulovic V., Bawendi M., Coe-Sullivan S., Kazlas P. T ., Nat. Photon., 2013, 7( 5), 407— 412 |
[52] | Shen H., Gao Q., Zhang Y., Lin Y., Lin Q., Li Z., Chen L., Zeng Z., Li X., Jia Y., Wang S., Du Z., Li L. S., Zhang Z ., Nat. Photon., 2019, 13( 3), 192— 197 |
[1] | 张启龙, 姚丽琴, 朱志才, 张钊, 杨辉. Au@PS纳米颗粒掺杂PDMS/(PVDF-TrFE)复合薄膜的制备及介电-疏水性能[J]. 高等学校化学学报, 2020, 41(6): 1269-1276. |
[2] | 李杰峰,赵江红,赵永祥. 流动控制沉积法制备PMMA叠层光子晶体薄膜及其光学性能研究[J]. 高等学校化学学报, 2020, 41(2): 293-299. |
[3] | 马浩翔, 来华, 张恩爽, 吕通, 成中军, 刘宇艳. 可粘贴超疏水薄膜的制备[J]. 高等学校化学学报, 2019, 40(3): 560-566. |
[4] | 赵祖, 李瑞, 张小超, 张长明, 刘建新, 王雅文, 王韵芳, 樊彩梅. 氟化铋薄膜的电化学原位合成及光催化活性[J]. 高等学校化学学报, 2018, 39(8): 1775-1781. |
[5] | 孙洋, 闫闯, 谢强, 史超, 张梁, 王丽娟, 孙丽晶. 双异质诱导层对红荧烯薄膜晶体管性能的影响[J]. 高等学校化学学报, 2018, 39(6): 1221-1227. |
[6] | 高成耀, 佟建华, 边超, 孙楫舟, 李洋, 王晋芬, 龚顺, 惠允, 夏善红. 痕量镉离子在原位铋修饰掺硼金刚石电极上的传感分析[J]. 高等学校化学学报, 2018, 39(3): 447-454. |
[7] | 康红军, 于晓妍, 来华, 成中军, 刘宇艳. TiO2纳米薄膜油下超疏水/超亲水性的可逆调控[J]. 高等学校化学学报, 2018, 39(12): 2621-2626. |
[8] | 张思航, 何永锋, 付润芳, 蒋洁, 李晴碧, 顾迎春, 陈胜. 纳米纤维素/聚3,4-乙撑二氧噻吩复合薄膜的制备及电致变色性能[J]. 高等学校化学学报, 2017, 38(6): 1090-1098. |
[9] | 郑家伟, 姜玲, 丁勇, 莫立娥, 丁有才, 胡林华, 戴松元. Au掺杂对TiO2薄膜表面态及电荷传输性能的影响[J]. 高等学校化学学报, 2017, 38(11): 2038-2044. |
[10] | 王斌, 王晓红, 刘宗瑞, 段莉梅, 徐玲, 白锁柱. 多酸/邻菲罗啉钌LBL薄膜的制备及电化学调控荧光开关性能[J]. 高等学校化学学报, 2016, 37(5): 822-828. |
[11] | 贾若琨, 杨晓航, 龙智云, 何蕾茵, 王盼新, 张凌云, 赵明. 基于连续弯液面构筑的有序阵列模板复制模塑制备图案化聚合物薄膜[J]. 高等学校化学学报, 2016, 37(2): 388-395. |
[12] | 李传宪, 石恩华, 杨爽, 姚博, 杨飞, 燕群. 聚苯胺/聚吡咯-纳米二氧化硅复合薄膜的合成及防腐性能[J]. 高等学校化学学报, 2016, 37(11): 2025-2033. |
[13] | 徐林, 张欢欢, 石彤非. 非溶剂诱导聚苯乙烯超薄膜去润湿过程中不同有序表面形貌的形成[J]. 高等学校化学学报, 2016, 37(1): 174-179. |
[14] | 黄卫民, 林海波. 多孔钛基掺硼金刚石电极结构对电催化降解阿司匹林性能的影响[J]. 高等学校化学学报, 2015, 36(9): 1765-1770. |
[15] | 梁龙琪, 黄卫民, 林海波. 邻苯二甲酸二甲酯在三维多孔钛基掺硼金刚石薄膜电极上的电催化氧化行为[J]. 高等学校化学学报, 2015, 36(8): 1606-1611. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||