高等学校化学学报 ›› 2016, Vol. 37 ›› Issue (3): 409.doi: 10.7503/cjcu20150916
吴小龑1,2, 刘琳琳2(), 解增旗2, 马於光1,2(
)
收稿日期:
2015-11-30
出版日期:
2016-03-10
发布日期:
2016-01-30
WU Xiaoyan1,2, LIU Linlin2,*(), XIE Zengqi2, MA Yuguang1,2,*(
)
Received:
2015-11-30
Online:
2016-03-10
Published:
2016-01-30
Contact:
LIU Linlin,MA Yuguang
E-mail:msliull@ scut. edu. cn;ygma@ scut. edu. cn
摘要:
金属纳米粒子以其特殊的体积效应、 量子尺寸效应、 表面效应和宏观量子隧道效应提供了诸多优异的光学和电学性能. 实验表明, 利用金属纳米粒子的光学和电学效应可以有效提升有机光电器件的综合性能. 目前在有机发光二极管器件中流明效率最好的增强效果为150%, 在有机光伏器件中功率转换效率最好的增强效果为70%, 特别是在一些高效有机光电器件中的成功应用, 虽然增强的比例相对较低, 但是器件效率基数大, 最终得到的器件性能相当优异. 这些性能提升的主要机理包括表面增强荧光、 等离激元光捕获、 能量转移、 电学效应、 散射效应等. 本文以金属纳米粒子的表面等离子体共振效应和电学效应为主线, 按照不同纳米粒子及器件中的修饰位置进行分类, 系统总结了金属纳米粒子提高有机发光二极管器件和有机光伏器件性能方面的工作. 针对纳米粒子的局域表面等离子共振效应作用范围小, 增强波长单一等问题, 总结了一些新的设计思路如远场增强效应、 纳米粒子和激子剖面的调控与匹配及散射增强效应等, 希望为进一步的结构设计提供帮助.
中图分类号:
TrendMD:
吴小龑, 刘琳琳, 解增旗, 马於光. 金属纳米粒子增强有机光电器件性能研究进展. 高等学校化学学报, 2016, 37(3): 409.
WU Xiaoyan, LIU Linlin, XIE Zengqi, MA Yuguang. Advance in Metal-based Nanoparticles for the Enhanced Performance of Organic Optoelectronics Devices†. Chem. J. Chinese Universities, 2016, 37(3): 409.
Fig.1 Classical Jablonski diagram for the free-space condition(A) and the modified form in the presence of metal particles(B) E: Excitation; Em: metal enhanced excitation rate; Γm: radiative rate in the presence of metal.
Fig.2 Structure designs of plasmonic-enhanced OPVs[27](A) Nanostructure behaving as scattering centers; incident photons are scattered mostly into the material having a higher dielectric constant at the thin film surface; (B) embedded NPs positioned in organic semiconductors to enhance the near-field in the cell; scattering events also possibly occur in such solar cells; (C) a periodical structure induces SPPs, which can turn the incident solar flux by 90°. Copyright from the Royal Society of Chemistry.
Fig.3 Schematic device structure of OLEDs incorporating Au NPs, TEM and high-resolution TEM images of the synthesized Au NPs(A), time-resolved PL spectra detected at the wavelength of 530 nm via a 370 nm laser source(B), current density-voltage(C), luminous efficiency characteristics of Alq3 OLEDs with and without Au NPs(D) and current efficiency of red emission OLEDs with and without Au NPs(E)[54] Inset of (B) shows the absorption spectra of the PEDOT∶PSS mixed and without Au NPs and the PL spectrum of an Alq3 layer. Insets of (C, E) are the corresponding EL spectra at the current density of 40 and 20 mA/cm2, respectively. Copyright from the AIP Publishing LLC.
Fig.4 TEM image of the Au NPs@SiO2 core-shell NPs(A), normalized EL spectra of the PLEDs and the normalized UV-Vis absorption spectra of 8 nm Au NPs and Au NPs@SiO2 dispersed in water(B), schematic of the device structure of the PLEDs(C), the current density-luminance-voltage characteristics(D) and luminous efficiency characteristics of devices with and without Au NPs@SiO2(E) and luminance-voltage and luminous efficiency-current density characteristics of a device with Au NPs(without the shell)(F)[82] Copyright from the AIP Publishing LLC.
Fig.5 Experimental(A) and theoretical(B) absorbance enhancement factor of the active layer with different amounts of Au NPs and theoretical near field distribution around an Au NP in the active layer(C)[49]Copyright from the Royal Society of Chemistry.
Fig.6 Device structure and the energy level of iPLEDs/Au NPs(A), characteristics of current density vs. applied voltage(B), luminous efficiency vs. current density curves as a function of different electrostatic adsorption time of Au NPs(C) and time-resolved PL spectra detected at the wavelength of 518 nm excited by a 405 nm laser source(D)[45] Inset is PL spectra of P-PPV layer with and without Au NPs(D). The w/o Au NPs represent without Au NPs. Copyright from the American Chemical Society.
Fig.7 Device structures of the OPVs(A), SEM image of the Au NPs(B), current density vs. voltage characteristics(C), recorded under illumination at 100 mW/cm2(AM 1.5 G) of the OPVs prepared with Cs2CO3 layers incorporating various amounts of Au NPs[93]Copyright from the AIP Publishing LLC.
Fig.8 Device structure and schematic of near effect and far-effect working distance(A), PL spectra of MEH-PPV, P-PPV, PFO film(B) and the relationship between Ztheory-PL and ZB or ZLE as a function of distance between Au NPs and fluorescent moleculars(C)[44]In (C), dash line stands for Ztheory-PL, filled rectangle represents for ZLE, empty rectangle stands for ZB. Red, green, blue colors represent MEH-PPV, P-PPV, PFO, respectively. Copyright from the John Wiley and Sons.
Fig.9 Theoretical electric field profile in the PEDOT∶PSS∶Au NPs/P3HT∶PC61BM OPVs(A) and optical density of the PEDOT∶PSS/P3HT∶PC61BM film with or without Au NPs incorporation(B)[53] Copyright from the Royal Society of Chemistry.
Fig.10 Current vs. voltage characteristics of the PDOF/gold NPs nanocomposite devices with different nanoparticle volume fractions(A), schematically illustrated mechanism of the formation of roughened surface(B)[28]Copyright from the American Chemical Society.
Fig.11 Chemical structures of PCDTBT and PC70BM, a schematic of the device structure and SEM images of synthesized Ag NPs of several diameters using polyol process(A) and UPS spectra of the plain OPVs(a) and the OPVs with Ag clusters(b)(B)[34] Copyright from the John Wiley and Sons.
Fig.12 Architechture and energy levels of the PLEDs(A) and luminous efficiency vs. current density curves as a function of Au NPs thickness(B)[46]The w/o Au NPs represent without Au NPs. Copyright from the Royal Society of Chemistry.
Fig.13 Current density vs. voltage curves of OPVs with various ZnO overlayer on top of Au NPs under simulated 1 sun AM1.5 illumination[103]Control(no Au NPs, black circle), Au NPs without ZnO overlayer(red square), 4 nm ZnO overlayer(orange cross), 8 nm ZnO overlayer(green triangle), 16 nm ZnO overlayer(blue inverse triangle), 24 nm ZnO overlayer(magenta diamond). Inset: schematic representation of the device structures. Copyright from the American Chemical Society.
Fig.14 Schematics of ITO-free PLEDs based on super yellow with an Ag NPs containing PEDOT∶PSS electrode(A), photoluminescence spectra of super yellow films on NMP∶PH500 and Ag@NMP∶PH500 electrodes(B), light-emitting characteristics of current density vs. applied voltage(C) and power efficiency vs. voltage curves(D)[39]Copyright from the Royal Society of Chemistry.
Fig.15 Chemical structures of PBDTTT-C-T and PC71BM(left), schematic of the device structure: NP device(top), grating device(bottom), and dual metallic structural device(right)(A), current density vs. voltage characteristics of devices with different structures measured under AM 1.5 illumination at 100 mW/cm2(B), the extracted absorption of the control flat OPVs and NPs+G750 OPVs, and the absorption enhancement of NPs50+G750, G750, and NPs 50 compared to the control flat OPVs(C) and the current density vs. voltage characteristics of hole-only device of ITO/PEDOT∶PSS/active layer/Au(D) and electron-only device with structure of ITO/TiO2/active layer/Ca/Al(E)[51]The 1-R-T resprents the 1-differse reflection(R)-diffuse transmission(T). Copyright from the John Wiley and Sons.
Geometry | OLEDs emissive layer | Luminous efficiency/ (cd·A-1) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
CD-Ag NPs | Super yellow | 11.65 | 27.16 | 133 | LSPR, “hot spot” | [37] |
Au NPs | MEH-PPV | 1.40 | 1.61 | 15 | LSPR | [38] |
Cu NPs | 1.74 | 24 | ||||
Au-Cu NPs | 1.57 | 12 | ||||
Au NPs | Alq3 | 1.04 | 1.28 | 25 | LSPR | [54] |
Au NPs@PS | PVK∶PBD∶Ir(ppy)3 | 20.3 | 28.9 | 42 | LSPR | [63] |
Au NPs | CBP∶Ir(ppy)3 | 11.0 | 27.7 | 150 | LSPR | [75] |
Pt3Co NPs | CBP∶Ir(ppy)3 | 44.2 | 76.4 | 73 | Electrical | [95] |
Au NPs | Alq3 | 3.4 | 5.7 | 68 | LSPR, electrical | [55] |
Pt3Co NPs | Alq3 | 13.0 | 29.3 | 125 | LSPR, scattering | [56] |
Au NPs | MEH-PPV | 0.51 | 0.68 | 33 | Far-field | [43] |
P-PPV | 11.3 | 14.9 | 32 | [44] | ||
PFO | 1.89 | 2.58 | 37 | |||
NPs dispersed into the emissive layer | ||||||
Au NPs | PVK∶PBD∶Ir(mppy)3 | 27 | 36 | 33 | LSPR | [30] |
Au NPs@SiO2 | Green-B | 6.3 | 10.0 | 60 | LSPR | [82] |
NPs dispersed into the cathode | ||||||
Au NPs | P-PPV | 4.4 | 10.5 | 140 | LSPR | [45] |
Au NPs | P-PPV | 15.4 | 18.3 | 19 | Electrical | [46] |
Au NPs | CBP∶Ir(ppy)3 | 17.6 | 18.0 | 2 | Electrical | [90] |
Table 1 Summary of device characteristics of OLEDs employing NPs with different nanostructures and locations
Geometry | OLEDs emissive layer | Luminous efficiency/ (cd·A-1) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
CD-Ag NPs | Super yellow | 11.65 | 27.16 | 133 | LSPR, “hot spot” | [37] |
Au NPs | MEH-PPV | 1.40 | 1.61 | 15 | LSPR | [38] |
Cu NPs | 1.74 | 24 | ||||
Au-Cu NPs | 1.57 | 12 | ||||
Au NPs | Alq3 | 1.04 | 1.28 | 25 | LSPR | [54] |
Au NPs@PS | PVK∶PBD∶Ir(ppy)3 | 20.3 | 28.9 | 42 | LSPR | [63] |
Au NPs | CBP∶Ir(ppy)3 | 11.0 | 27.7 | 150 | LSPR | [75] |
Pt3Co NPs | CBP∶Ir(ppy)3 | 44.2 | 76.4 | 73 | Electrical | [95] |
Au NPs | Alq3 | 3.4 | 5.7 | 68 | LSPR, electrical | [55] |
Pt3Co NPs | Alq3 | 13.0 | 29.3 | 125 | LSPR, scattering | [56] |
Au NPs | MEH-PPV | 0.51 | 0.68 | 33 | Far-field | [43] |
P-PPV | 11.3 | 14.9 | 32 | [44] | ||
PFO | 1.89 | 2.58 | 37 | |||
NPs dispersed into the emissive layer | ||||||
Au NPs | PVK∶PBD∶Ir(mppy)3 | 27 | 36 | 33 | LSPR | [30] |
Au NPs@SiO2 | Green-B | 6.3 | 10.0 | 60 | LSPR | [82] |
NPs dispersed into the cathode | ||||||
Au NPs | P-PPV | 4.4 | 10.5 | 140 | LSPR | [45] |
Au NPs | P-PPV | 15.4 | 18.3 | 19 | Electrical | [46] |
Au NPs | CBP∶Ir(ppy)3 | 17.6 | 18.0 | 2 | Electrical | [90] |
Geometry | OPVs active layer | PCE(%) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
Au NPs | P3HT∶PCBM | 3.48 | 4.19 | 20 | LSPR | [33] |
Au NPs | P3HT∶PCBM | 2.37 | 2.91 | 23 | LSPR | [40] |
Au NPs | MEH-PPV∶PCBM | 1.99 | 2.36 | 19 | LSPR | [41] |
CD-Ag NPs | PTB7∶PC71BM | 7.53 | 8.31 | 10 | LSPR, “hot spot” | [37] |
Au NPs | Tandem P3HT∶IPCA, PSBTBT∶PC70BM | 5.22 | 6.24 | 20 | Strong local near-field | [78] |
Au NPs | P3HT∶PCBM | 3.61 | 4.32 | 20 | LSPR | [57] |
Au NPs | P3HT∶PCBM | 3.10 | 3.51 | 13 | Hole collection | [53] |
Ag NPs | PTBT∶PC61BM | 3.27 | 4.31 | 32 | LSPR, Electrical | [39] |
NPs dispersed into the active layer | ||||||
Ag NWs | P3HT∶PCBM | 3.16 | 3.72 | 18 | LSPR | [47] |
Au NPs | PFSDCN∶PCBM | 1.64 | 2.17 | 32 | LSPR | [49] |
Ag NPs+Ag nanoparims | P3HT∶PCBM | 3.60 | 4.30 | 19 | LSPR | [50] |
Ag NPs | PCBTBT∶PC70BM | 6.30 | 7.10 | 13 | Electrical | [34] |
Au NPs | P3OT-C60 | 1.27 | 1.90 | 50 | Electrical | [102] |
Ag NPs+Ag Grating | PBDTTT-C-T∶PC71BM | 7.59 | 8.79 | 16 | LSPR, Electrical | [51] |
NPs dispersed into the cathode | ||||||
Au NPs | PIDT-PhanQ∶PC71BM | 6.65 | 7.50 | 13 | LSPR | [36] |
Au NPs | P3HT∶PCBM | 3.12 | 3.54 | 13 | LSPR | [93] |
Au NPs | P3HT∶PCBM | 2.25 | 2.35 | 5 | Electrical | [103] |
Table 2 Summary of device characteristics of OPVs employing NPs with different nanostructures and locations
Geometry | OPVs active layer | PCE(%) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
Au NPs | P3HT∶PCBM | 3.48 | 4.19 | 20 | LSPR | [33] |
Au NPs | P3HT∶PCBM | 2.37 | 2.91 | 23 | LSPR | [40] |
Au NPs | MEH-PPV∶PCBM | 1.99 | 2.36 | 19 | LSPR | [41] |
CD-Ag NPs | PTB7∶PC71BM | 7.53 | 8.31 | 10 | LSPR, “hot spot” | [37] |
Au NPs | Tandem P3HT∶IPCA, PSBTBT∶PC70BM | 5.22 | 6.24 | 20 | Strong local near-field | [78] |
Au NPs | P3HT∶PCBM | 3.61 | 4.32 | 20 | LSPR | [57] |
Au NPs | P3HT∶PCBM | 3.10 | 3.51 | 13 | Hole collection | [53] |
Ag NPs | PTBT∶PC61BM | 3.27 | 4.31 | 32 | LSPR, Electrical | [39] |
NPs dispersed into the active layer | ||||||
Ag NWs | P3HT∶PCBM | 3.16 | 3.72 | 18 | LSPR | [47] |
Au NPs | PFSDCN∶PCBM | 1.64 | 2.17 | 32 | LSPR | [49] |
Ag NPs+Ag nanoparims | P3HT∶PCBM | 3.60 | 4.30 | 19 | LSPR | [50] |
Ag NPs | PCBTBT∶PC70BM | 6.30 | 7.10 | 13 | Electrical | [34] |
Au NPs | P3OT-C60 | 1.27 | 1.90 | 50 | Electrical | [102] |
Ag NPs+Ag Grating | PBDTTT-C-T∶PC71BM | 7.59 | 8.79 | 16 | LSPR, Electrical | [51] |
NPs dispersed into the cathode | ||||||
Au NPs | PIDT-PhanQ∶PC71BM | 6.65 | 7.50 | 13 | LSPR | [36] |
Au NPs | P3HT∶PCBM | 3.12 | 3.54 | 13 | LSPR | [93] |
Au NPs | P3HT∶PCBM | 2.25 | 2.35 | 5 | Electrical | [103] |
[1] | Tang C. W., Vanslyke S. A., Appl. Phys. Lett., 1987, 51(12), 913—915 |
[2] | Pan Y. Y., Li W. J., Zhang S. T., Yao L., Gu C., Xu H., Yang B., Ma Y. G., Adv. Opt. Mater., 2014, 2(6), 510—515 |
[3] | Li X. C., Sun J. Z., Ma Y. G., Shen J. C., Chem. J. Chinese Universities, 1999, 20(2), 309—314 |
(李晓常, 孙景志, 马於光, 沈家骢. 高等学校化学学报,1999, 20(2), 309—314) | |
[4] | Li W. J., Gao Z., Wang Z. M., Yang B., Lu P., Ma Y. G., Chem. J. Chinese Universities, 2014, 35(9), 1849—1858 |
(李维军, 高曌, 王志明, 杨兵, 路萍, 马於光. 高等学校化学学报, 35(9), 1849—1858) | |
[5] | Li J. K., Qi Z. N., Wang F. S., Chem. J. Chinese Universities, 1996, 17(12), 1952—1958 |
(李建科, 漆宗能, 王佛松. 高等学校化学学报, 1958, 17(12), 1952—1958) | |
[6] | Chen J. S., Shi C. S., Fu Q., Zhao F. C., Hu Y., Feng Y. L., Ma D. G., J. Mater. Chem., 2012, 22(11), 5164—5170 |
[7] | Wang Q., Ma D. G., Chem. Soc. Rev., 2010, 39(5), 2387—2398 |
[8] | Tao Y. T., Yang C. L., Qin J. G., Chem. Soc. Rev., 2011, 40(5), 2943—2970 |
[9] | Fan C., Yang C. L., Chem. Soc. Rev., 2014, 43(17), 6439—6469 |
[10] | He Z. C., Zhong C. M., Su S. J., Xu M., Wu H. B., Cao Y., Nat. Photonics, 2012, 6(9), 591—595 |
[11] | Nian L., Zhang W. Q., Zhu N., Liu L. L., Xie Z. Q., Wu H. B., Wurthner F., Ma Y. G., J. Am. Chem. Soc., 2015, 137(22), 6995—6998 |
[12] | Zuo L. J., Chueh C. C., Xu Y. X., Chen K. S., Zang Y., Li C. Z., Chen H. Z., Jen A. K. Y., Adv. Mater., 2014, 26(39), 6778—6784 |
[13] | Gao Y., Yip H. L., Chen K. S., O’Malley K. M., Acton O., Sun Y., Ting G., Chen H. Z., Jen A. K. Y., Adv. Mater., 2011, 23(16), 1903—1908 |
[14] | Li Y. F., Acc Chem. Res., 2012, 45(5), 723—733 |
[15] | Gu C., Chen Y. C., Zhang Z. B., Xue S. F., Sun S. H., Zhang K., Zhong C. M., Zhang H. H., Pan Y. Y., Lü Y., Yang Y. Q., Li F. H., Zhang S. B., Huang F., Ma Y. G., Adv. Mater., 2013, 25(25), 3443—3448 |
[16] | Yu H. Z., Peng J. B., Chem. J. Chinese Universities, 2007, 28(12), 2359—2363 |
(於黄忠, 彭俊彪. 高等学校化学学报, 2007, 28(12), 2359—2363) | |
[17] | Wen Y. G., Liu Y. Q., Guo Y. L., Yu G., Hu W. P., Chem. Rev., 2011, 111(5), 3358—3406 |
[18] | Deng J., Tang J., Xu Y. X., Liu L. Q., Wang Y., Xie Z. Q., Ma Y. G., Phys. Chem. Chem. Phys., 2015, 17(5), 3421—3425 |
[19] | Zhou Y., Wang L., Wang J., Pei J., Cao Y., Adv. Mater., 2008, 20(19), 3745—3749 |
[20] | Tian C. G., Jiang D. Y., Li B. Z., Lin J. Q., Zhao Y. J., Yuan W. X., Zhao J. X., Liang Q. C., Gao S., Hou J. H., Qin J. M., ACS Appl. Mater. Interfaces, 2014, 6(3), 2162—2166 |
[21] | Rycenga M., Cobley C. M., Zeng J., Li W. Y., Moran C. H., Zhang Q., Qin D., Xia Y. N., Chem. Rev., 2011, 111(6), 3669—3712 |
[22] | Shenashen M. A., Safty S. A. E., EIshehy E. A., Part. Part. Syst. Charact., 2014, 31(3), 293—316 |
[23] | Jeong S. H., Choi H., Kim J. Y., Lee T. W., Part. Part. Syst. Charact., 2015, 32(2), 164—175 |
[24] | Choy W. C. H., Chem. Commun., 2014, 50(81), 11984—11993 |
[25] | Stratakis E., Kymakis E., Mater. Today, 2013, 16(4), 133—146 |
[26] | Gan Q. Q., Bartoli F. J., Kafafi Z. H., Adv. Mater., 2013, 25(17), 2385—2396 |
[27] | Chou C. H., Chen F. C., Nanoscale,2014, 6(15), 8444—8458 |
[28] | Park J. H., Lim Y. T., Park O. O., Kim J. K., Yu J. W., Kim Y. C., Chem. Mater., 2004, 16(4), 688—692 |
[29] | Park J. H., Lim Y. T., Park O. O., Kim Y. C., Macromol. Rapid. Commun., 2003, 24(4), 331—334 |
[30] | Choulis S. A., Mathai M. K., Choong V. E., Appl. Phys. Lett., 2006, 88(21), 213503—213505 |
[31] | Shang L., Chen H. J., Dong S. J., J. Phys. Chem. C, 2007, 111(29), 10780—10784 |
[32] | Kinkhabwala A., Yu Z. F., Fan S. H., Avlasevich Y., Mullen K., Moerner W. E., Nat. Photonics, 2009, 3(11), 654—657 |
[33] | Chen F. C., Wu J. L., Lee C. L., Hong Y., Kuo C. H., Huang M. H., Appl. Phys. Lett., 2009, 95(1), 013305—013307 |
[34] | Wang D. H., Park K. H., Seo J. H., Seifter J., Jeon J. H., Kim J. K., Park J. H., Park O. O., Heeger A. J., Adv. Energy. Mater., 2011, 1(5), 766—770 |
[35] | Fu W. F., Chen X. Q., Yang X., Wang L., Shi Y., Shi M. M., Li H. Y., Jen A. K. Y., Chen J. W., Cao Y., Chen H. Z., Phys. Chem. Chem. Phys., 2013, 15(40), 17105—17111 |
[36] | Yang X., Chueh C. C., Li C. Z., Yip H. L., Yin P. P., Chen H. Z., Chen W. C., Jen A. K. Y., Adv. Energy. Mater., 2013, 3(5), 666—673 |
[37] | Choi H., Ko S. J., Choi Y., Joo P., Kim T., Lee B. R., Jung J. W., Choi H. J., Cha M., Jeong J. R., Hwang I. W., Song M. H., Kim B. S., Kim J. Y., Nat. Photonics, 2013, 7(9), 732—738 |
[38] | Heo M., Cho H., Jung J. W., Jeong J. R., Park S., Kim J. Y., Adv. Mater., 2011, 23(47), 5689—5693 |
[39] | Ko S. J., Choi H., Lee W., Kim T., Lee B. R., Jung J. W., Jeong J. R., Song M. H., Lee J. C., Woo H. Y., Kim J. Y., Energy Environ. Sci., 2013, 6(6), 1949—1955 |
[40] | Chen X. Q., Zuo L. J., Fu W. F., Yan Q. X., Fan C. C., Chen H. Z., Sol. Energy Mater. & Sol. Cells,2013, 111(1), 1—8 |
[41] | Qiao L. F., Wang D., Zuo L. J., Ye Y. Q., Qian J., Chen H. Z., He S. L., Appl. Energy, 2011, 88(3), 848—852 |
[42] | Yang X., Liu W. Q., Xiong M., Zhang Y. Y., Liang T., Yang J. T., Xu M. S., Ye J., Chen H. Z., J. Mater. Chem. A, 2014, 2(36), 14798—14806 |
[43] | Wu X. Y., Liu L. L., Yu T. C., Yu L., Xie Z. Q., Mo Y. Q., Xu S. P., Ma Y. G., J. Mater. Chem. C, 2013, 1(42), 7020—7025 |
[44] | Wu X. Y., Liu L. L., Deng Z. C., Nian L., Zhang W. Z., Hu D. H., Xie Z. Q., Mo Y. Q., Ma Y. G., Part. Part. Syst. Charact., 2015, 32(6), 686—692 |
[45] | Wu X. Y., Liu L. L., Choy W. C. H., Yu T. C., Cai P., Gu Y. J., Zhang Y. N., Du L. Y., Mo Y. Q., Xu S. P., Ma Y. G., ACS Appl. Mater. Interfaces, 2014, 6(14), 11001—11006 |
[46] | Wu X. Y., Yang Y. Z., Chi X., Han T., Hanif M., Liu L. L., Xie Z. Q., Chen X. D., Ma Y. G., J. Mater. Chem. C, 2015, 3(38), 9928—9932 |
[47] | Yang Y. Z., Lin X. F., Qing J., Zhong Z. F., Ou J. M., Hu C. L., Chen X. D., Zhou X., Chen Y. J., Appl. Phys. Lett., 2014, 104(12), 123302—123305 |
[48] | Yang Y. Z., Qing J., Ou J. M., Lin X. F., Yuan Z. K., Yu D. S., Zhou X., Chen X. D., Sol. Energy, 2015, 122(3), 231—238 |
[49] | Wang C. C. D., Choy W. C. H., Duan C. H., Fung D. D. S., Sha W. E. I., Xie F. X., Huang F., Cao Y., J. Mater. Chem., 2012, 22(3), 1206—1211 |
[50] | Li X. H., Choy W. C. H., Lu H. F., Sha W. E. I., Ho A. H. P., Adv. Funct. Mater., 2013, 23(21), 2728—2735 |
[51] | Li X. H., Choy W. C. H., Huo L. J., Xie F. X., Sha W. E. I., Ding B. F., Guo X., Li Y. F., Hou J. H., You B. J., Yang Y., Adv. Mater., 2012, 24(22), 3046—3052 |
[52] | Sha W. E. I., Choy W. C. H., Liu Y. G., Chew W. C., Appl. Phys. Lett., 2011, 99(11), 113304—113306 |
[53] | Fung D. D. S., Qiao L. F., Choy W. C. H., Wang C. D., Sha W. E. I., Xie F. X., He S. L., J. Mater. Chem., 2011, 21(41), 16349—16356 |
[54] | Xiao Y., Yang J. P., Cheng P. P., Zhu J. J., Xu Z. Q., Deng Y. H., Lee S. T., Li Y. Q., Tang J. X., Appl. Phys. Lett., 2012, 100(1), 013308—013311 |
[55] | Zhang D. D., Wang R., Ma Y. Y., Wei H. X., Ou Q. D., Wang Q. K., Zhou L., Lee S. T., Li Y. Q., Tang J. X., Org. Electron, 2014, 15(4), 961—967 |
[56] | Gu Y., Zhang D. D., Ou Q. D., Deng Y. H., Zhu J. J., Cheng L., Liu Z., Lee S. T., Li Y. Q., Tang J. X., J. Mater. Chem. C, 2013, 1(28), 4319—4326 |
[57] | Cheng P. P., Ma G. F., Li J., Xiao Y., Xu Z. Q., Fan G. Q., Li Y. Q., Lee S. T., Tang J. X., J. Mater. Chem., 2012, 22(42), 22781—22787 |
[58] | Cheng P. P., Zhou L. L., Li J. A., Li Y. Q., Lee S. T., Tang J. X., Org. Electron, 2013, 14(9), 2158—2163 |
[59] | Fan G. Q., Zhuo Q. Q., Zhu J. J., Xu Z. Q., Cheng P. P., Li Y. Q., Sun X. H., Lee S. T., Tang J. X., J. Mater. Chem., 2012, 22(31), 15614—15619 |
[60] | Gu M., Li X. P., Cao Y. Y., Light: Sci. Appl., 2014, 3, DOI: 10.1038/lsa.2014.58 |
[61] | Su Y. H., Ke Y. F., Cai S. L., Yao Q. Y., Light: Sci. Appl., 2012, 3DOI: 10.1038/lsa.2012.14 |
[62] | Park B., Yun S. H., Cho C. Y., Kim Y. C., Shin J. C., Jeon H. G., Huh Y. H., Hwang I., Baik K. Y., Lee Y. I., Uhm H. S., Cho G. S., Choi E. H., Light: Sci. Appl., 2014, 3DOI: 10.1038/lsa.2012.103 |
[63] | Kim T., Kang H., Jeong S., Kang D. J., Lee C., Lee C. H., Seo M. K., Lee J. Y., Kim B. J., ACS Appl. Mater. Interfaces, 2014, 6(19), 16956—16965 |
[64] | Park H. J., Vak D., Noh Y. Y., Lim B., Kim D. Y., Appl. Phys. Lett., 2007, 90(16), 161107—161109 |
[65] | Kummerlen J., Letiner A., Brunner H., Aussenegg F. R., Wokaun A., Mol. Phys., 1993, 80(5), 1031—1046 |
[66] | Geddes C. D., Lakowicz J. R., J. Fluoresc., 2002, 12(2), 121—129 |
[67] | Liu L. L., Xie Z. Q., Ma Y. G., Chinese. Sci. Bull., 2013, 58(22), 2741—2746 |
[68] | Xu M. J., Chen T. R., Li B., Chem. J. Chinese Universities, 2012, 33(11), 2368—2372 |
(许苗军, 陈天然, 李斌. 高等学校化学学报, 2012,33(11), 2368—2372) | |
[69] | Shi Y. L., Zhang X. G., Li H. L., Chem. J. Chinese Universities, 2001, 22(5), 821—823 |
(史彦莉, 张校刚, 力虎林. 高等学校化学学报, 2001, 22(5), 821—823) | |
[70] | Guo C.F., Sun T. Y., Cao F., Liu Q., Ren Z. F., Light:Sci. Appl., 2014, 3, DOI: 10.1038/lsa.2014.42 |
[71] | Chen X., Jia B.H., Zhang Y. N., Gu M., Light:Sci. Appl., 2013, 2, DOI: 10.1038/lsa.2013.48 |
[72] | Atwater H. A., Polman A., Nat. Mater., 2010, 9(3), 205—213 |
[73] | Zhang W., Chen Y., Hu C., Zhang Y., Chen X., Zhang M. Q., J. Mater. Chem. C, 2013, 1(6), 1265—1271 |
[74] | Beck F. J., Verhagen E., Mokkapati S., Polman A., Catchpole K. R., Opt. Express, 2011, 19(S2), 146—156 |
[75] | Lee Y. H., Kim D. H., Yoo K. H., Kim T. W., Appl. Phys. Lett., 2014, 105(18), 183303—183307 |
[76] | Kim D. H., Kim T. W., Opt. Express, 2015, 23(9), 11211—11220 |
[77] | Ji W. Y., Zhang L. T., Xie W. F., Opt. Lett., 2012, 37(11), 2019—2021 |
[78] | Yang J., You J. B., Chen C. C., Hsu W. C., Tan H. R., Zhang X. W., Hong Z. R., Yang Y., ACS Nano, 2011, 5(8), 6210—6217 |
[79] | Lu L. Y., Luo Z. Q., Xu T., Yu L. P., Nano Lett., 2013, 13(1), 59—64 |
[80] | Su Z. S., Wang L. D., Li Y. T., Zhang G., Zhao H. F., Yang H. G., Ma Y. J., Chu B., Li W. L., ACS Appl. Mater. Interfaces, 2013, 5(24), 12847—12853 |
[81] | Baek S. W., Park G., Noh J., Cho C., Lee C. H., Seo M. K., Song H., Lee J. Y., ACS Nano, 2014, 8(4), 3302—3312 |
[82] | Peng J. H., Xu X. J., Tian Y., Wang J. S., Tang F., Li L. D., Appl. Phys. Lett., 2014, 105(17), 173301—173305 |
[83] | Liu F., Nunzi J. M., Appl. Phys. Lett., 2011, 99(12), 123302—123304 |
[84] | Kochergin V., Neely L., Jao C. Y., Robinson H. D., Appl. Phys. Lett., 2011, 98(13), 133305—133307 |
[85] | He Y. Y., Liu C. Y., Li J. F., Zhang X. Y., Li Z. Q., Shen L., Guo W. B., Ruan S. P., ACS Appl. Mater. Interfaces, 2015, 7(29), 15848—15854 |
[86] | Chuang M. K., Chen F. C., ACS Appl. Mater. Interfaces, 2015, 7(13), 7397—7405 |
[87] | Yang K. Y., Choi K. C., Ahn C. W., Appl. Phys. Lett., 2009, 94(17), 173301—173303 |
[88] | Park S., Kwon O., Yang J., Lee C., Whang K. W., SID Int. Symp. Dig. Technol. Pap,2013, 44(1), 1428—1430 |
[89] | Ma X., Benavides J., Haughn C. R., Xu F., Doty M. F., Cloutier S. G., Org. Electron, 2013, 14(7), 1916—1923 |
[90] | Xu K., Li Y., Zhang W., Zhang L. T., Xie W. F., Curr. Appl. Phys., 2014, 14(1), 53—56 |
[91] | Sha W. E. I., Li X. H., Choy W. C. H., Sci. Rep., 2014, 4(1), 6236—6245 |
[92] | Sha W. E. I., Zhu H. L., Chen L., Chew W. C., Choy W. C. H., Sci. Rep., 2015, 5(2), 8525—8532 |
[93] | Kao C. S., Chen F. C., Liao C. W., Huang M. H., Hsu C. S., Appl. Phys. Lett., 2012, 101(19), 193902—193905 |
[94] | Sung H., Lee J., Han K., Lee J. K., Sung J., Kim D., Choi M., Kim C., Org. Electron, 2014, 15(2), 491—499 |
[95] | Ji W. Y., Wang J., Zeng Q. H., Su Z. S., Sun Z. C., Rsc. Adv., 2013, 3(34), 14616—14624 |
[96] | Wang D., Yasui K., Ozawa M., Odoi K., Shimamura S., Fujita K., Appl. Phys. Lett., 2013, 102(2), 023302—023304 |
[97] | Jung M., Yoon D. M., Kim M., Kim C., Lee T., Kim J. H., Lee S., Lim S. H., Woo D., Appl. Phys. Lett., 2014, 105(1), 013306—013310 |
[98] | Kim S. H., Bae T. S., Heo W., Joo T., Song K. D., Park H. G., Ryu S. Y., ACS Appl. Mater. Interfaces, 2015, 7(27), 15031—15041 |
[99] | Jesuraj P. J., Jeganathan K., Rsc. Adv., 2015, 5(1), 684—689 |
[100] | Kim J. Y., Hwang C. R., Jo S. H., Jung W. G., Appl. Phys. Lett., 2011, 99(23), 233304—233306 |
[101] | Moon J. M., Bae J. H., Jeong J. A., Jeong S. W., Park N. J., Kim H. K., Appl. Phys. Lett., 2011, 90(16), 163516—163518 |
[102] | Kim K., Carroll D. L., Appl. Phys. Lett., 2005, 87(20), 203113—203115 |
[103] | Wang J., Lee Y. J., Chadha A. S., Yi J., Jespersen M. L., Kelley J. J., Nguyen H. M., Nimmo M., Malko A. V., Vaia R. A., Zhou W. D., Hsu J. W. P., J. Phys. Chem. C, 2013, 117(1), 85—91 |
[104] | Chen S. H., Yu S. T., Liou Y. Y., Yu C. F., Lin C. F., Kao P. C., J. Electrochem. Soc., 2011, 158(3), 53—57 |
[105] | Chen S. H., Chan S. C., Appl. Phys. Express, 2012, 5(6), 062001—062003 |
[106] | Chen S. H., Jhong J. Y., Opt. Express, 2011, 19(18), 16843—16850 |
[107] | Spyropoulos G. D., Stylianakis M. M., Stratakis E., Kymakis E., Appl. Phys. Lett., 2012, 100(21), 213904—213908 |
[1] | 郑雪莲, 杨翠翠, 田维全. 全椅式边含薁缺陷石墨烯纳米片的二阶非线性光学性质[J]. 高等学校化学学报, 2022, 43(3): 20210806. |
[2] | 王昭一, 穆世林, 张学民, 张俊虎. 均一取向等离子体二聚体的制备及光学机理[J]. 高等学校化学学报, 2021, 42(8): 2374. |
[3] | 王雅雯, 李东, 梁文凯, 孙迎辉, 江林. 表面等离激元金属纳米粒子的多元化结构及应用[J]. 高等学校化学学报, 2021, 42(4): 1213. |
[4] | 潘菁, 徐敏敏, 袁亚仙, 姚建林. 基于表面增强拉曼光谱快速检测纺织品禁用染料[J]. 高等学校化学学报, 2021, 42(12): 3716. |
[5] | 康慧敏, 王洪强, 王慧莹, 吴黎歆, 仇永清. 卟啉-碳硼烷-硼亚甲基二吡咯三元化合物二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2019, 40(5): 965. |
[6] | 周和根, 金华, 郭辉瑞, 林晶, 章永凡. 黄铜矿型铜基硫属半导体材料的电子结构和光学性质[J]. 高等学校化学学报, 2019, 40(3): 518. |
[7] | 吴丹, 李曼, 钟瑶, 安奎生, 陈艳伟. 箭头形金纳米锥的湿法制备及性能研究[J]. 高等学校化学学报, 2018, 39(8): 1617. |
[8] | 吴娟, 王洪强, 刘晓云, 史志圆, 仇永清. D-A-D(D')型邻位碳硼烷三元体系二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2018, 39(7): 1490. |
[9] | 李凯丰, 吴丹, 陈艳伟. 铜掺杂对金纳米棒生长及光学性质的影响[J]. 高等学校化学学报, 2018, 39(5): 855. |
[10] | 李想, 王慧莹, 王洪强, 叶近婷, 仇永清. 联吡啶RuⅡ/Ⅲ配合物二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2018, 39(10): 2221. |
[11] | 李荣荣, 王洪强, 王丽, 吴娟, 仇永清. 二芳基氨(硼)-π-碳硼烷三元化合物的二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2017, 38(10): 1796. |
[12] | 李坦, 张小超, 王凯, 李瑞, 樊彩梅. α,β,γ,δ,ε,η-Bi2O3电子结构和光学性质的第一性原理研究[J]. 高等学校化学学报, 2016, 37(5): 920. |
[13] | 萧烨, 王洋, 周为, 彭晓宏. 杂环化聚丙烯亚胺树状聚合物负载钌铑双金属纳米粒子的制备及在催化丁腈橡胶氢化中的应用[J]. 高等学校化学学报, 2016, 37(4): 786. |
[14] | 李绍晨, 于广涛, 陈巍, 周中军, 黄旭日. 碱金属原子吸附PPV及其衍生物体系的结构和非线性光学性质的理论研究[J]. 高等学校化学学报, 2015, 36(6): 1146. |
[15] | 谢宪, 于梅花, 张惠萍, 王益林. 抗坏血酸还原亚碲酸钠水相合成CdTe量子点[J]. 高等学校化学学报, 2015, 36(4): 608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||