Chem. J. Chinese Universities ›› 2026, Vol. 47 ›› Issue (2): 20250225.doi: 10.7503/cjcu20250225
• Articles: Inorganic Chemistry • Previous Articles Next Articles
XU Yiming, SHI Yiwei, WANG Xin, ZHU Zhihui, SONG Zhiguo(
), WANG Min(
)
Received:2025-08-16
Online:2026-02-10
Published:2025-10-16
Contact:
SONG Zhiguo, WANG Min
E-mail:songzhiguo@qymail.bhu.edu.cn;wangmin@qymail.bhu.edu.cn
Supported by:CLC Number:
TrendMD:
XU Yiming, SHI Yiwei, WANG Xin, ZHU Zhihui, SONG Zhiguo, WANG Min. Green Synthesis of Mono- and Disubstituted Quinazolinones by Multi-site Synergistic Catalysis of Novel Three-dimensional Single-nuclear Zn(II) Complexes[J]. Chem. J. Chinese Universities, 2026, 47(2): 20250225.
| Complex | 1 | 2 | Complex | 1 | 2 |
|---|---|---|---|---|---|
| Formula | C22H8N4O10S2Zn | C24H30N2O10S2Zn | γ/(°) | 90 | 90 |
| Formula weight | 617.81 | 635.99 | V/nm3 | 1.33902(12) | 1.36890(2) |
| Crystal system | Monoclinic | Monoclinic | Z | 2 | 2 |
| Space group | P21/c | P21/c | Dc/(g·cm-3) | 1.532 | 1.543 |
| a/nm | 1.12530(5) | 1.12602(9) | F(000) | 620 | 660 |
| b/nm | 0.82811(4) | 0.81423(7) | Reflections collected | 19628 | 43157 |
| c/nm | 1.43698(8) | 1.49445(13) | Goodness⁃of⁃fit on F2 | 1.051 | 1.127 |
| α/(°) | 90 | 90 | R1, ωR2* | 0.0454, 0.1247 | 0.0502, 0.1141 |
| β/(°) | 90.543(2) | 92.426(4) | R1, ωR2(all data)* | 0.0546, 0.1328 | 0.0694, 0.1322 |
Table 1 Crystallographic parameters of complexes 1 and 2
| Complex | 1 | 2 | Complex | 1 | 2 |
|---|---|---|---|---|---|
| Formula | C22H8N4O10S2Zn | C24H30N2O10S2Zn | γ/(°) | 90 | 90 |
| Formula weight | 617.81 | 635.99 | V/nm3 | 1.33902(12) | 1.36890(2) |
| Crystal system | Monoclinic | Monoclinic | Z | 2 | 2 |
| Space group | P21/c | P21/c | Dc/(g·cm-3) | 1.532 | 1.543 |
| a/nm | 1.12530(5) | 1.12602(9) | F(000) | 620 | 660 |
| b/nm | 0.82811(4) | 0.81423(7) | Reflections collected | 19628 | 43157 |
| c/nm | 1.43698(8) | 1.49445(13) | Goodness⁃of⁃fit on F2 | 1.051 | 1.127 |
| α/(°) | 90 | 90 | R1, ωR2* | 0.0454, 0.1247 | 0.0502, 0.1141 |
| β/(°) | 90.543(2) | 92.426(4) | R1, ωR2(all data)* | 0.0546, 0.1328 | 0.0694, 0.1322 |
| Bond | 1 | 2 | Bond | 1 | 2 |
|---|---|---|---|---|---|
| Zn1—O1W | 0.2147(3) | 0.2149(3) | Zn1—O1W#1 | 0.2147(3) | 0.2149(3) |
| Zn1—O2W | 0.2152(3) | 0.2170(3) | Zn1—O2W#1 | 0.2152(3) | 0.2170(3) |
| Zn1—N1 | 0.2083(3) | 0.2083(3) | Zn1—N1#1 | 0.2083(3) | 0.2083(3) |
| O1W—Zn1—O1W#1 | 180 | 180 | O1W—Zn1—O2W | 89.46(12) | 89.48(13) |
| O1W—Zn1—O2W#1 | 90.53(12) | 90.52(13) | O2W#1—Zn1—O2W | 180 | 180 |
| N1—Zn1—O1W | 87.83(10) | 93.79(11) | N1—Zn1—O2W | 92.84(10) | 92.39(11) |
| N1—Zn1—N1#1 | 180 | 180 | N1—Zn1—O1W#1 | 92.17(10) | 86.21(11) |
| N1—Zn1—O2W#1 | 87.16(10) | 87.61(11) |
Table 2 Selected bond lengths(nm) and bond angles(°) of complexes 1 and 2*
| Bond | 1 | 2 | Bond | 1 | 2 |
|---|---|---|---|---|---|
| Zn1—O1W | 0.2147(3) | 0.2149(3) | Zn1—O1W#1 | 0.2147(3) | 0.2149(3) |
| Zn1—O2W | 0.2152(3) | 0.2170(3) | Zn1—O2W#1 | 0.2152(3) | 0.2170(3) |
| Zn1—N1 | 0.2083(3) | 0.2083(3) | Zn1—N1#1 | 0.2083(3) | 0.2083(3) |
| O1W—Zn1—O1W#1 | 180 | 180 | O1W—Zn1—O2W | 89.46(12) | 89.48(13) |
| O1W—Zn1—O2W#1 | 90.53(12) | 90.52(13) | O2W#1—Zn1—O2W | 180 | 180 |
| N1—Zn1—O1W | 87.83(10) | 93.79(11) | N1—Zn1—O2W | 92.84(10) | 92.39(11) |
| N1—Zn1—N1#1 | 180 | 180 | N1—Zn1—O1W#1 | 92.17(10) | 86.21(11) |
| N1—Zn1—O2W#1 | 87.16(10) | 87.61(11) |
| Complex | D—H···A | D—H/nm | H···A/nm | D···A/nm | ∠DHA/(°) |
|---|---|---|---|---|---|
| 1 | O1W—H1WA···O(1) | 0.085 | 0.193 | 0.2765(4) | 165.1 |
| O1W—H1WB···O(2)#3 | 0.085 | 0.204 | 0.2861(4) | 160.9 | |
| O2W—H2WA···O(3)#1 | 0.085 | 0.195 | 0.2792(4) | 170.9 | |
| 2 | O2W—H2WA···O(2)#3 | 0.085 | 0.200 | 0.2817(5) | 159.6 |
| O2W—H2WB···O(3)#4 | 0.085 | 0.213 | 0.2859(5) | 142.9 | |
| O1W—H1WA···O(1) | 0.085 | 0.214 | 0.2827(4) | 137.8 | |
| O1W—H1WB···O(1)#3 | 0.085 | 0.220 | 0.2878(2) | 136.6 |
Table 3 Hydrogen bond lengths and bond angles of complexes 1 and 2*
| Complex | D—H···A | D—H/nm | H···A/nm | D···A/nm | ∠DHA/(°) |
|---|---|---|---|---|---|
| 1 | O1W—H1WA···O(1) | 0.085 | 0.193 | 0.2765(4) | 165.1 |
| O1W—H1WB···O(2)#3 | 0.085 | 0.204 | 0.2861(4) | 160.9 | |
| O2W—H2WA···O(3)#1 | 0.085 | 0.195 | 0.2792(4) | 170.9 | |
| 2 | O2W—H2WA···O(2)#3 | 0.085 | 0.200 | 0.2817(5) | 159.6 |
| O2W—H2WB···O(3)#4 | 0.085 | 0.213 | 0.2859(5) | 142.9 | |
| O1W—H1WA···O(1) | 0.085 | 0.214 | 0.2827(4) | 137.8 | |
| O1W—H1WB···O(1)#3 | 0.085 | 0.220 | 0.2878(2) | 136.6 |
| Entry | R1 | R2 | Catalyst | Time/min | Yield(%) | m.p./℃ | |
|---|---|---|---|---|---|---|---|
| Found | Repored | ||||||
| 1* | 262 | 46.2 | |||||
| 2 | C6H5 | C6H5 | Complex 1 | 20 | 92.3 | 214—215 | 214—215[ |
| 3 | C6H5 | C6H5 | Complex 2 | 35 | 88.2 | 214—215 | 214—215[ |
| 4 | C6H5 | 2⁃Cl―C6H4 | Complex 1 | 35 | 87.1 | 217—218 | 214—217[ |
| 5 | C6H5 | 4⁃Cl―C6H4 | Complex 1 | 34 | 85.8 | 219—220 | 219—220[ |
| 6 | C6H5 | 4⁃CH3O―C6H4 | Complex 1 | 40 | 89.1 | 204—205 | 204—205[ |
| 7 | 4⁃Cl―C6H4 | C6H5 | Complex 1 | 32 | 84.1 | 211—212 | 210—212[ |
| 8 | 4⁃CH3―C6H4 | C6H5 | Complex 1 | 37 | 82.6 | 197—198 | 196—199[ |
| 9 | 4⁃CH3―C6H4 | 4⁃NO2―C6H4 | Complex 1 | 31 | 90.3 | 213—214 | 210—212[ |
| 10 | Et | C6H5 | Complex 1 | 67 | 82.3 | 135—136 | 134—137[ |
| 11 | Et | 4⁃Cl―C6H4 | Complex 1 | 31 | 80.1 | 134—135 | 132—135[ |
| 12 | Et | 3⁃NO2―C6H4 | Complex 1 | 19 | 91.5 | 177—178 | 176—178[ |
| 13 | NH4OAc | C6H5 | Complex 1 | 28 | 92.1 | 219—220 | 218—219[ |
| 14 | NH4OAc | 4⁃Cl―C6H4 | Complex 1 | 24 | 86.4 | 206—207 | 205—206[ |
| 15 | NH4OAc | 2⁃NO2―C6H4 | Complex 1 | 15 | 91.4 | 193—194 | 193—194[ |
| 16 | NH4OAc | 3⁃NO2―C6H4 | Complex 1 | 18 | 87.2 | 215—217 | 216—217[ |
| 17 | NH4OAc | 4⁃CH3―C6H4 | Complex 1 | 23 | 88.7 | 232—233 | 233—234[ |
| 18 | NH4OAc | 4⁃CH3O―C6H4 | Complex 1 | 26 | 90.4 | 192—193 | 192—193[ |
Table 4 Investigation of the universality of the catalysts
| Entry | R1 | R2 | Catalyst | Time/min | Yield(%) | m.p./℃ | |
|---|---|---|---|---|---|---|---|
| Found | Repored | ||||||
| 1* | 262 | 46.2 | |||||
| 2 | C6H5 | C6H5 | Complex 1 | 20 | 92.3 | 214—215 | 214—215[ |
| 3 | C6H5 | C6H5 | Complex 2 | 35 | 88.2 | 214—215 | 214—215[ |
| 4 | C6H5 | 2⁃Cl―C6H4 | Complex 1 | 35 | 87.1 | 217—218 | 214—217[ |
| 5 | C6H5 | 4⁃Cl―C6H4 | Complex 1 | 34 | 85.8 | 219—220 | 219—220[ |
| 6 | C6H5 | 4⁃CH3O―C6H4 | Complex 1 | 40 | 89.1 | 204—205 | 204—205[ |
| 7 | 4⁃Cl―C6H4 | C6H5 | Complex 1 | 32 | 84.1 | 211—212 | 210—212[ |
| 8 | 4⁃CH3―C6H4 | C6H5 | Complex 1 | 37 | 82.6 | 197—198 | 196—199[ |
| 9 | 4⁃CH3―C6H4 | 4⁃NO2―C6H4 | Complex 1 | 31 | 90.3 | 213—214 | 210—212[ |
| 10 | Et | C6H5 | Complex 1 | 67 | 82.3 | 135—136 | 134—137[ |
| 11 | Et | 4⁃Cl―C6H4 | Complex 1 | 31 | 80.1 | 134—135 | 132—135[ |
| 12 | Et | 3⁃NO2―C6H4 | Complex 1 | 19 | 91.5 | 177—178 | 176—178[ |
| 13 | NH4OAc | C6H5 | Complex 1 | 28 | 92.1 | 219—220 | 218—219[ |
| 14 | NH4OAc | 4⁃Cl―C6H4 | Complex 1 | 24 | 86.4 | 206—207 | 205—206[ |
| 15 | NH4OAc | 2⁃NO2―C6H4 | Complex 1 | 15 | 91.4 | 193—194 | 193—194[ |
| 16 | NH4OAc | 3⁃NO2―C6H4 | Complex 1 | 18 | 87.2 | 215—217 | 216—217[ |
| 17 | NH4OAc | 4⁃CH3―C6H4 | Complex 1 | 23 | 88.7 | 232—233 | 233—234[ |
| 18 | NH4OAc | 4⁃CH3O―C6H4 | Complex 1 | 26 | 90.4 | 192—193 | 192—193[ |
| Atom | Charge/eV | Atom | Charge/eV | Atom | Charge/eV |
|---|---|---|---|---|---|
| Zn1 | 14.56 | O4 | -22.64 | O10 | -17.09 |
| S1 | 33.42 | O5 | -19.35 | N1 | -9.09 |
| S2 | 33.36 | O6 | -16.74 | N2 | -12.03 |
| O1 | -22.18 | O7 | -15.81 | N3 | -9.28 |
| O2 | -23.37 | O8 | -17.36 | N4 | -11.73 |
| O3 | -20.79 | O9 | -17.52 | N5 | -10.62 |
Table 5 Mulliken charge of part atoms of complex 1
| Atom | Charge/eV | Atom | Charge/eV | Atom | Charge/eV |
|---|---|---|---|---|---|
| Zn1 | 14.56 | O4 | -22.64 | O10 | -17.09 |
| S1 | 33.42 | O5 | -19.35 | N1 | -9.09 |
| S2 | 33.36 | O6 | -16.74 | N2 | -12.03 |
| O1 | -22.18 | O7 | -15.81 | N3 | -9.28 |
| O2 | -23.37 | O8 | -17.36 | N4 | -11.73 |
| O3 | -20.79 | O9 | -17.52 | N5 | -10.62 |
| [1] | Li Z. H., Zhao L., Bian Y. Q., Li Y., Qu J., Feng S., Curr. Top. Med. Chem., 2022, 22(12), 1035—1044 |
| [2] | Gatadi S., Pulivendala G., Gour J., Malasala S., Bujji S., Parupalli R., Shaikh M., Godugu C., Nanduri S., J. Mol. Struct., 2020, 1200, 127097 |
| [3] | Ghodge B., Kshirsagar A., Navghare V., Beni⁃Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 1—12 |
| [4] | Seifu G. W., Birhan Y. S., Beshay B. Y., Hymete A., Bekhit A. A., BMC Chem., 2022, 16(1), 107 |
| [5] | Charoensutthivarakul S., Lohawittayanan D., Kanjanasirirat P., Jearawuttanakul K., Seemakhan S., Chabang N., Schlaepp P., Tantivess V., Limboonreung T., Phanchana M., Molecules, 2023, 28(7), 2999 |
| [6] | Mahala S., Singh S., Rakesh P., Bhuvanesh N., Joshi H. J., Org. Chem., 2025, 90(10), 3789—3795 |
| [7] | Ibrahim M. K., Eissa I. H., Abdallah A. E., Metwaly A. M., Radwan M. M., ElSohly M. A., Bioorg. Med. Chem., 2017, 25(4), 1496—1513 |
| [8] | Pathak S., Malhotra V., Nath R., Shanker K., Cent. Nerv. Syst. Agents Med. Chem., 2014, 14(1), 34—38 |
| [9] | Cheng D. P., Yan X. H., Pu Y. Q., Shen J., Xu X. L., Yan J. Z., Eur. J. Org. Chem., 2021,(6), 944—950 |
| [10] | Salehi P., Dabiri M., Zolfigol M. A., Baghbanzadeh M., Synlett, 2005, 7, 1155—1157 |
| [11] | Ghasemzadeh M. A., Mirhosseini⁃Eshkevari B., Nanoscale Adv., 2023, 5(24), 7031—7041 |
| [12] | Ghashang M., Orient. J. Chem., 2012, 28(3), 1213—1218 |
| [13] | Mitra B., Pariyar G. C., Ghosh P., RSC Adv., 2021, 11(3), 1271—1281 |
| [14] | Wang M., Zhang T. T., Liang Y., Gao J. J., Monatsh. Chem., 2012, 143, 835—839 |
| [15] | Hassaballah A. I., El-Ziaty A. K., Ewies E. F., Zayed E. M., Mohamed G. G., Inorg. Chem. Commun., 2023, 155, 110989 |
| [16] | Chen H. P., Gong Y. R., Chu Q. Q., Pang X., Huang X. J., Tian X. D., Yang W. T., Pan Q. H., Su Z. M., Wang X. L., Chem. Res. Chin. Univ., 2023, 39(6), 954—959 |
| [17] | Yin M. R., Yan Q. Q., Li B., Yong G. P., J. Solid State Chem., 2022, 305, 122672 |
| [18] | Wang Z. H., Su R. H., Wang G. D., Shi W. J., Hou L. J., Environ. Chem. Eng., 2023, 11(5), 110488 |
| [19] | Yu Q. S., Qi C., Gu S. X., Yang X. D., Jiang Q., Wei R. B., Shi P. F., Acta Chim. Sinica, 2025, 83(6), 579—587 |
| 于千水, 戚聪, 顾顺心, 杨欣达, 姜琴, 魏荣斌, 施鹏飞. 化学学报, 2025, 83(6), 579—587 | |
| [20] | Sun A. H., Yang Y. H., Liu Y. F., Ding L., Duan P., Yang W. T., Pan Q. H., Cryst. Growth Des., 2021, 21(9), 4971—4978 |
| [21] | Wang X., Qi J. Y., Yang R. J., Song Z. G., Wang M., Chem. J. Chinese Univerties, 2024, 45(10), 20240297 |
| 王鑫, 祁金阳, 杨瑞杰, 宋志国, 王敏. 高等学校化学学报, 2024, 45(10), 20240297 | |
| [22] | Wang T., Astruc D., Coord. Chem. Rev., 2025, 524, 216300 |
| [23] | Erxleben A., Coord. Chem. Rev., 2003, 246(1/2), 203—228 |
| [24] | Samanta A., Shit M., Karan A. K., Manik N. B., Sinha C., Khanra S., J. Mol. Struct., 2025, 1321, 139866 |
| [25] | Atwood J. L., Barbour L. J., Hardie M. J., Raston C. L., Coord. Chem. Rev., 2001, 222(1), 3—32 |
| [26] | Côté A. P., Shimizu G. K., Coord. Chem. Rev., 2003, 245(1/2), 49—64 |
| [27] | Dayal S., Burda C., J. Am. Chem. Soc., 2008, 130(10), 2890—2891 |
| [28] | Lu W. G., Su C. Y., Lu T. B., Jiang L., Chen J. M., J. Am. Chem. Soc., 2006, 128(1), 34—35 |
| [29] | Bruker S., SMART(Version 5.628), SAINT(Version 6.45), SADABS, Bruker AXS Inc., Madison, WI, 2001 |
| [30] | Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Crystallogr., 2009, 42, 339—341 |
| [31] | Sheldrick G. M., SHELXL-97, University of Göttingen, Göttingen, 1997 |
| [32] | Lu T., Chen F. W., J. Comput. Chem., 2012, 33(5), 580—592 |
| [33] | Humphrey W., Dalke A., Schulten K., J. Mol. Graphics, 1996, 14(1), 33—38 |
| [34] | Xia X, Wang S., Yang X. Q., Fan R. Wei R. Z., Liu Z., Tang Q. J., Chin. J. Inorg. Chem., 2021, 37(12), 2133—2140 |
| 夏祥, 王胜, 杨兴乾, 樊荣, 魏润芝, 刘峥, 唐群基. 无机化学学报, 2021, 37(12), 2133—2140 | |
| [35] | Shi Y. W., Yang R. J., Zhang Y. C., Wang X., Wang M., Song Z. G., J. Synth. Cryst., 2024, 53(9), 1583—1590 |
| 史燚威, 杨瑞杰, 张迎春, 王鑫, 王敏, 宋志国. 人工晶体学报, 2024, 53(9), 1583—1590 | |
| [36] | Chen J. X., Wu D. Z., He F., Liu M. C., Wu H. Y., Ding J. C., Su W. K., Tetrahedron Lett., 2008, 49(23), 3814—3818 |
| [37] | Lu N., Meng L., Chen D. Z., Zhang G. Q., J. Mol. Catal., 2011, 339(1/2), 99—107 |
| [38] | Sun C., Liu M., Sun H., Hang F., Sun N., Chen D., Int. J. Quantum Chem., 2015, 115(2), 59—67 |
| [39] | Lu N., Meng L., Chen D., Zhang G. J., Phys. Chem. A, 2012, 116(1), 670—679 |
| [1] | LI Haojing, GE Changwei, ZHONG Qidi, YAN Hong, SUN Guohui. Theoritical Studies on the Photophysical Properties of 1,4-Dihydropyridine Derivatives [J]. Chem. J. Chinese Universities, 2026, 47(2): 20250250. |
| [2] | NIE Chuanqi, DONG Fuyao, GUO Ziwei, CHENG Long, YANG Nailiang, LIU Kesong, YU Cunming, JIANG Lei. Preparation and Performance of SiO2/PMMA Superhydrophobic Transparent Composite Coatings [J]. Chem. J. Chinese Universities, 2026, 47(1): 20250346. |
| [3] | WANG Dandan, CHEN Liping, FENG Xinjian. Three-phase Enzymatic Reaction Interface Based on 3D Branched TiO2 Nanoarrays for High Performance Photoelectrochemical Sensing [J]. Chem. J. Chinese Universities, 2026, 47(1): 20250330. |
| [4] | ZHANG Mingwen, ZHOU Jie, WANG Zhaoyu. Selective Catalytic Performance of Pt/Cd-TiO2 for CO2 Hydrogenation Reactions [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250109. |
| [5] | YAN Junlin, LI Xiaodong, LIU Dongyang, LI Mingzhe, ZHANG Su. Synthesis and Near-infrared Reflective Properties of Rare-earth-doped Bi2-x Gd x MoO6 [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250088. |
| [6] | LING Zongpeng, CHEN Haitao, GAO Hongxia, DAI Huicong, ZHAO Zhenchao, YANG Qihua. Quaternary Ammonium Cation-assisted Synthesis of Sulfur Vacancy-rich MoS2 for Catalyzing Hydrogenation of Sulfur-containing Nitroarenes [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250048. |
| [7] | HUI Chenyang, XU Chenhui, YANG Yang, LIU Jialun, LI Yatai, GUO Zhenguo, YANG Zhenzhen, ZHANG Genlei. Preparation of 2,5-Furandicarboxylic Acid by Electrocatalytic Oxidation of 5-Hydroxymethylfurfural with P-NiCoMo-LDH [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250126. |
| [8] | REN Shufang, GUO Tong, WANG Zihan, LIU Yahui, CHEN Yu, ZENG Junling. Construction of Molecular Imprinted Electrochemical Sensor Based on 2D Ti3C2T x Nanosheet/Conductive Kochen Black Composite Polymethacrylic Acid and the Detection of Dopamine [J]. Chem. J. Chinese Universities, 2025, 46(7): 20250040. |
| [9] | GONG Wenpeng, ZHOU Linnan. Fluorescent Detection of Sulfite Ions(SO23 -) Based on Cerium-functionalized Metal-organic Framework UiO-66-(COOH)2 [J]. Chem. J. Chinese Universities, 2025, 46(7): 20250062. |
| [10] | WANG Changying, ZHANG Dawei, CHEN Guanji, ZHANG Zhenwei, XIAO Weihong, WANG Bin, CHEN Qidan, YANG Bai. Preparation of Carbon Dots Fluorescent Marker and Its Application in Highly Selective NO2‒ Detection [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240519. |
| [11] | LI Dan, HU Honghui, HOU Hongshuai, ZHANG Sheng, LIU Lijie, JING Mingjun, WU Tianjing. Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240356. |
| [12] | LIU Jinkun, RAN Zhun, LIU Qingqing, LIU Yingliang, ZHUANG Jianle, HU Chaofan. Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240412. |
| [13] | LU Jingyu, LIU Zhiping, SHENG Xia, FENG Xinjian. Surface Wettability Regulation of Titanium Dioxide for Enhanced Photocatalytic Oxidation Reaction Performance [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240571. |
| [14] | HU Yuteng, SANG Lixia, DU Chunxu. Interfacial Performances of MoS2-H2O Depended on Plasmonic Metal and Its Localized Thermal Effect [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240569. |
| [15] | XU Xingyu, XIE Xiaoming, QIU Ping. Ring-opening Mechanism of 2-Phenyl-3-amineazetidine to Form Thiazole or Oxazole [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240547. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||