Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (9): 20250088.doi: 10.7503/cjcu20250088
• Articles: Inorganic Chemistry • Previous Articles Next Articles
YAN Junlin1, LI Xiaodong1, LIU Dongyang2, LI Mingzhe3, ZHANG Su4()
Received:
2025-03-31
Online:
2025-09-10
Published:
2025-06-30
Contact:
ZHANG Su
E-mail:zhangsu@ciac.ac.cn
Supported by:
CLC Number:
TrendMD:
YAN Junlin, LI Xiaodong, LIU Dongyang, LI Mingzhe, ZHANG Su. Synthesis and Near-infrared Reflective Properties of Rare-earth-doped Bi2-x Gd x MoO6[J]. Chem. J. Chinese Universities, 2025, 46(9): 20250088.
Bi2-x MoO6: xGd | L* | a* | b* | C* | h |
---|---|---|---|---|---|
x=0 | 95.77 | -3.02 | 11.45 | 11.84 | 104.79 |
x=0.2 | 95.24 | -2.53 | 14.27 | 14.49 | 100.06 |
x=0.4 | 94.34 | -2.16 | 14.37 | 14.53 | 98.56 |
x=0.6 | 94.22 | -1.56 | 15.40 | 15.48 | 95.77 |
x=0.8 | 94.01 | -1.53 | 15.96 | 16.03 | 95.46 |
x=1.0 | 93.71 | -1.04 | 17.75 | 17.78 | 93.36 |
Table 1 CIE L*a*b* parameters of Bi2-x Gd x MoO6(x=0, 0.2, 0.4, 0.6, 0.8, 1.0)
Bi2-x MoO6: xGd | L* | a* | b* | C* | h |
---|---|---|---|---|---|
x=0 | 95.77 | -3.02 | 11.45 | 11.84 | 104.79 |
x=0.2 | 95.24 | -2.53 | 14.27 | 14.49 | 100.06 |
x=0.4 | 94.34 | -2.16 | 14.37 | 14.53 | 98.56 |
x=0.6 | 94.22 | -1.56 | 15.40 | 15.48 | 95.77 |
x=0.8 | 94.01 | -1.53 | 15.96 | 16.03 | 95.46 |
x=1.0 | 93.71 | -1.04 | 17.75 | 17.78 | 93.36 |
Bi2-x Gd x MoO6 | R | R* | Bi2-x Gd x MoO6 | R | R* |
---|---|---|---|---|---|
x=0 | 88.18 | 88.00 | x=0.8 | 88.58 | 88.42 |
x=0.2 | 88.57 | 88.33 | x=1.0 | 89.00 | 88.74 |
x=0.4 | 90.11 | 89.53 | TiO2 | 75.66 | 80.29 |
x=0.6 | 87.68 | 87.75 |
Table 2 Near-infrared reflectance and NIR solar reflectance of Bi2-x Gd x MoO6 samples
Bi2-x Gd x MoO6 | R | R* | Bi2-x Gd x MoO6 | R | R* |
---|---|---|---|---|---|
x=0 | 88.18 | 88.00 | x=0.8 | 88.58 | 88.42 |
x=0.2 | 88.57 | 88.33 | x=1.0 | 89.00 | 88.74 |
x=0.4 | 90.11 | 89.53 | TiO2 | 75.66 | 80.29 |
x=0.6 | 87.68 | 87.75 |
Bi2-x Gd x MoO6 | TiO2 | x=0 | x=0.4 |
---|---|---|---|
Thickness/μm | 209.6 | 207.8 | 207.3 |
Bottom temperature of aluminum plate/℃ | 39.5 | 38.6 | 38.1 |
Internal temperature of the enclosure/℃ | 28.2 | 27.1 | 26.5 |
Heat flux/(W·cm-2) | 52.8 | 52.1 | 51.5 |
Table 3 Coating thickness, bottom temperature of the aluminum plate, internal temperature of the enclosure, and heat flux for Bi2-x Gd x MoO6 samples and TiO2 coatings
Bi2-x Gd x MoO6 | TiO2 | x=0 | x=0.4 |
---|---|---|---|
Thickness/μm | 209.6 | 207.8 | 207.3 |
Bottom temperature of aluminum plate/℃ | 39.5 | 38.6 | 38.1 |
Internal temperature of the enclosure/℃ | 28.2 | 27.1 | 26.5 |
Heat flux/(W·cm-2) | 52.8 | 52.1 | 51.5 |
[1] | Deilami K., Kamruzzaman M., Liu Y., Int. J. Appl. Earth Obs. Geoinf., 2018, 67, 30—42 |
[2] | Carlosena L., Ruiz⁃Pardo Á., Feng J., Irulegi O., Hernández⁃Minguillón R. J., Santamouris M., Sol. Energy, 2020, 208, 430—444 |
[3] | Ta L., Wang L. L., Gao H., Adv. Mater. Res., 2014, 926, 4369—4372 |
[4] | Ali A. A., El Fadaly E., Ahmed I. S., Dyes Pigm., 2018, 158, 451—462 |
[5] | Wang Q. Y., Wang Z. W., Qi M. H., Zhao H., Xin X., Verma A., Siritanon T., Ramirez A. P., Subramanian M.A., Jiang P., ACS Sustain. Chem. Eng., 2024, 12(14), 5522—5532 |
[6] | Su Y. J., Chen C., Wang J. Y., Han A. J., Ye M. Q., Ceram. Int., 2024, 50(11), 18169—18176 |
[7] | Xie P. Y., Wang H., Appl. Therm. Eng., 2021, 191, 116883 |
[8] | Fedel M., Rosati A., Rossi S., Picollo M., Parrino F., Ceram. Int., 2024, 50(9), 15952—15964 |
[9] | Lv K., Liang X., Zhang L. M., Zhang Z. T., Gao Y. F., Ceram. Int., 2024, 50(10), 16901—16908 |
[10] | Ianoș R., Rus I., Lazău R., Ciutan R., Appl. Mater. Today, 2024, 39, 102301 |
[11] | Thongkanluang T., Kittiauchawal T., Limsuwan P., Ceram. Int., 2011, 37(2), 543—548 |
[12] | Zheng N. X., Lei J. A., Wang S. B., Li Z. F., Chen X. B., Coatings, 2020, 10(11), 1065 |
[13] | Chen Y. Z., Li Z. X., Ding S. Q., Yang X. L., Guo T. T., Int. J. Pavement Eng., 2022, 23(13), 4455—4464 |
[14] | Chen Y. J., Sha A. M., Jiang W., Lu Q., Du P. D., Hu K., Li C., Constr. Build. Mater., 2025, 470, 140645 |
[15] | Cai C., Wu Y., Sun K. Z., Fang Q. L., Li P. Z., Cui S., Zhang Y., Chem. Eng. J., 2025, 511, 162195 |
[16] | Ding C., Tian M. M., Han A. J., Ye M. Q., Chen X., Sol. Energy, 2020, 195, 660—669 |
[17] | Feng L., Li L. Q., Zhang M. Q., Yang Y. J., Sun X. Q., Ceram. Int., 2022, 48(20), 30630—30639 |
[18] | Minagawa K., Nishiguchi Y., Oka R., Masui T., ACS Omega., 2021, 6(4), 3411—3417 |
[19] | Xiao Y., Huang B., Chen J. Q., Sun X. Q., J. Alloys Compd., 2018, 762, 873—880 |
[20] | Zhu H., Bai M. M., Guo W. Y., Li W. X., China Ceramics, 2025, 61(1), 50—57, 64 |
朱海, 白明敏, 郭文渊, 李伟信. 中国陶瓷, 2025, 61(1), 50—57, 64 | |
[21] | Reid M. F., Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2016, 50, 47—64 |
[22] | Zhao S., Huo Z. P., Zhong G. Q., Zhang H., Hu L. Q., Chem. J. Chinese Universities, 2022, 43(6), 20220039 |
赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 高等学校化学学报, 2022, 43(6), 20220039 | |
[23] | Moriomoto T., Oka R., Minagawa K, Masui T., RSC Adv., 2022, 12(26), 16570—16575 |
[24] | Zhang X. R., Wen Y. Q., Lu F., Hao X. K., Zhang C. X., Liu J. R., Qi Y. Q., Li X. F., Li L., Zhang G. R.. Chinese Rare Earths, 2023, 44(4), 108—124 |
张秀荣, 温永清, 鲁飞, 郝先库, 张呈祥, 刘金荣, 祁雅琼, 李雪菲, 李璐, 张光睿. 稀土, 2023, 44(4), 108—124 | |
[25] | Li Y. J., Cao T. P., Mei Z. M., Xi X. T., Wang X., Chem. J. Chinese Universities, 2017, 38(12), 2313—2319 |
李跃军, 曹铁平, 梅泽民, 席啸天, 王霞. 高等学校化学学报, 2017, 38(12), 2313—2319 | |
[26] | Jia X. X., Xu M. J., Ai L. L., Guo N. N., Wang L. X., Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2023, 40(5), 600—609 |
贾欣欣, 徐梦姣, 艾礼莉, 郭楠楠, 王鲁香, 新疆大学学报(自然科学版)(中英文), 2023, 40(5), 600—609 | |
[27] | Wu X. L., Bi2MoO6⁃Based Semiconductor for Photocatalytic Water Oxidation: Strategies for Improving the Performance, the University of New South Wales, Sydney, 2018 |
[28] | Liu S., Zhang S., Li X. D., Wang S., Li C. Y., Ceram. Int., 2023, 49(3) 5456—5465 |
[29] | Wei J. W., Cai C., Xu S. Q., Zhang Y., Ceram. Int., 2024, 50(4), 6606—6614 |
[30] | Wei X. L., Zou X. Y., Deng Z. F., Bao W. W., Ai T. T., Zhang Q., Front. Mater., 2022, 9, 850115 |
[31] | Uemoto K. L., Sato N. M. N., John V. M., Energy Buildings, 2010, 42(1), 17—22 |
[32] | Fairey P. W., Florida Solar Energy Center, University of Florida, Gainesville, 1986 |
[33] | Han Y. Y., Wang L. Y., Wang D., Liang D. Y., Wang S. Q., Lu G. X., Di Z. Y., Jia G., J. Alloys Compd., 2017, 695, 3018—3023 |
[34] | Kunzel R., Umisedo N. K., Okuno E., Yoshimura E. M., Marques A. P. D., Ceram. Int., 2020, 46(10), 15018—15026 |
[35] | Jayaraman A., Wang S. Y., Shieh S. R., Sharma S. K., Ming L. C., J. Raman Spectrosc., 1995, 26(6), 451—455 |
[36] | Phuruangrat A., Putdum S., Dumrongrojthanath P., Thongtem S., Thongtem T., J. Nanomater., 2015, 2015, 135735 |
[37] | Liu S., Zhang S., Li X. D., Wang S., Han M., Li C. Y., Opt. Mater., 2022, 133, 112921 |
[38] | Deng J. G., Zhang L., Dai H. X., He H., Au C. T., J. Mol. Catal. A: Chem., 2009, 299(1/2), 60—67 |
[39] | Liu Y. P., Yang J. X., Hao Y. M., Qu S. N., Chem. J. Chinese Universities, 2025, 46(6), 20240070 |
刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 高等学校化学学报, 2025, 46(6), 20240070 | |
[40] | Mansour S. A., Farha A. H., Crystals, 2025, 15(3), 271 |
[41] | Tauc J., Grigorovici R., Vancu A., Phys. Status Solidi A, 1966, 15(2), 627—637 |
[42] | Xu S. Q., Zhang J., Zhang Y., Zhu W., Wang A. P., Zhuang S. X., Ceram. Int., 2022, 48(10), 14406—14413 |
[43] | Thara T. R. A., Rao P. P., Raj A. K. V., Sreena T. S., Sol. Energy Mater. Sol. Cells, 2019, 200, 110015 |
[44] | Meenakshr P., Selvaraj M., Sol. Energy Mater. Sol. Cells, 2018, 174, 530—537 |
[45] | Chen C. L., Han A. J., Ye M. Q., Wang J. Y., Chen X., J. Alloys Compd., 2021, 886, 161257 |
[46] | Cao H. W., Tang Q. F., Qu B., Huo H., Zheng Q. L., Cao Y. L., Li J. Z., Chem. J. Chinese Universities, 2024, 45(2), 20230398 |
曹华文, 唐秋凡, 屈蓓, 霍欢, 郑启龙, 曹意林, 李吉祯. 高等学校化学学报, 2024, 45(2), 20230398 |
[1] | LI Hongyu, ZHANG Hongxin. Novel Rare Earth Near-infrared Fluorescent Probes for in vivo Multiplexed Imaging [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240181. |
[2] | MAO Dongao, XU Linmeng, BI Yanfeng. Structural Transformation and Luminescence Properties of Terbium-sulfonylcalix[4]arene Mononuclear Complexes [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230107. |
[3] | CHANG Yunfei, LIAO Mingyi, YUAN Gaofei. NaBH4/Ziegler-Natta Rare Earth Catalyst Reduction System for Reduction of Liquid Terminated-carboxyl Fluoroelastomers [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230133. |
[4] | ZOU Shaoshuang, YANG Peng, LIU Tao. Synthesis of a Multiple Stimulus-responsive Multicolor Fluorescent Hydrogel [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230175. |
[5] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[6] | ZHOU Yonghui, LI Yao, WU Yuxuan, TIAN Jing, XU Longquan, FEI Xu. Synthesis of A Novel Photoluminescence Self-healing Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210606. |
[7] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[8] | HAN Zongsu, YU Xiaoyong, MIN Hui, SHI Wei, CHENG Peng. A Rare Earth Metal-Organic Framework with H6TTAB Ligand [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210342. |
[9] | LIANG Longqi, CHEN Cailing, YU Ying, LI Yuxin, LI Chunguang, SHI Zhan. Synthesis, Luminescence and Cell Imaging Properties of Amino Acid Capped YVO4∶Eu Nanoparticles [J]. Chem. J. Chinese Universities, 2020, 41(3): 425. |
[10] | ZHAO Mengxin, MENG Zhe, LI Heping, MA Zongqin, ZHAN Haijuan, LIU Wanyi. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate Under Visible Light Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479. |
[11] | RAN Shiya,SHEN Haifeng,LI Xiaonan,WANG Zilu,GUO Zhenghong,FANG Zhengping. Effect and Mechanism of Rare Earth Trifluoromethanesulfonate on the Thermal Stability of Polypropylene† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1333. |
[12] | LI Bing,WANG Xuemin,BAI Fengying,LIU Shuqing. Synthesises, Structures and Antibacterial Activities of a Series of Rare Earth Nitrogen Heterocyclic Complexes† [J]. Chem. J. Chinese Universities, 2019, 40(4): 632. |
[13] | LIANG Donglei, SONG Qiusheng, YAO Yutian, LIU Ben. Preparation of Complex Nanogel with Up-conversion Fluorescence-responsive Performance and Its Fluorescence Energy Transfer Behavior† [J]. Chem. J. Chinese Universities, 2019, 40(3): 583. |
[14] |
ZHANG Yan, ZHANG Shengming, FANG Guizhen.
Antioxidant Property of Catalyzed Lignosulfonate Using S2 |
[15] | TANG Keyun,LI Luoyuan,FU Limin,AI Xicheng,ZHANG Jianping. Effect of Crystal Matrix on Energy Transfer Mechanism in Rare-earth Upconversion Nanomaterials† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||