Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (5): 20240569.doi: 10.7503/cjcu20240569
• Physical Chemistry • Previous Articles Next Articles
HU Yuteng, SANG Lixia(), DU Chunxu
Received:
2024-12-30
Online:
2025-05-10
Published:
2025-02-26
Contact:
SANG Lixia
E-mail:sanglixia@bjut.edu.cn
Supported by:
CLC Number:
TrendMD:
HU Yuteng, SANG Lixia, DU Chunxu. Interfacial Performances of MoS2-H2O Depended on Plasmonic Metal and Its Localized Thermal Effect[J]. Chem. J. Chinese Universities, 2025, 46(5): 20240569.
System | (x, y, z)/nm | Number of molecules |
---|---|---|
MoS2⁃H2O | (3.15, 3.15, 7.90) | (MoS2)200(H2O)1200 |
Ag/MoS2⁃H2O | (3.15, 3.15, 7.90) | (Ag)40(MoS2)200(H2O)1200 |
Table 1 Structural parameters and number of molecules in each system
System | (x, y, z)/nm | Number of molecules |
---|---|---|
MoS2⁃H2O | (3.15, 3.15, 7.90) | (MoS2)200(H2O)1200 |
Ag/MoS2⁃H2O | (3.15, 3.15, 7.90) | (Ag)40(MoS2)200(H2O)1200 |
System | Eads/eV | Qt /e | dHW—O/nm |
---|---|---|---|
Ag/MoS2⁃H2O | 0.578 | 0.084 | 0.269 |
MoS2⁃H2O | 0.208 | 0.003 | 0.269 |
Table 2 Adsorption energy(Eads), surface charge transfer(Qt ) and hydrogen bond length(dHW—O) of water molecules on MoS2 and Ag/MoS2 surfaces
System | Eads/eV | Qt /e | dHW—O/nm |
---|---|---|---|
Ag/MoS2⁃H2O | 0.578 | 0.084 | 0.269 |
MoS2⁃H2O | 0.208 | 0.003 | 0.269 |
1 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
2 | Yang Z., Chen H., Wu F., Hou Y., Qiao J., Ma X., Bai H., Ma B., Li J., Int. J. Hydrogen Energy, 2022, 47(73), 31295—31308 |
3 | You P., Lian C., Chen D., Xu J., Zhang C., Meng S., Wang E., Nano Lett., 2021, 21(15), 6449—6455 |
4 | Chen H., Tan C., Zhang K., Zhao W., Tian X., Huang Y., Appl. Surf. Sci., 2019, 481, 1064—1071 |
5 | Fan Y., Yu S., Wang Y., Xie Y., Qiu X., Sep. Purif. Technol., 2024, 335, 126243 |
6 | Zakariyya Y., Hafeez H., Mohammed J., Ndikilar C., Suleiman A., Umaru D., Int. J. Hydrogen Energy, 2024, 95, 185—211 |
7 | Chen L., Hsieh S., Kuo C., Hsieh S., Chen W., Chen C., Dong C., RSC Adv., 2020, 10(53), 31794—31799 |
8 | Parlak O., Incel A., Uzun L., Turner A., Tiwari A., Biosens. Bioelectron., 2017, 89(1), 545—550 |
9 | Saha A., Sinhamahapatra A., Kang T., Ghosh S., Yu J., Panda A., Nanoscale, 2017, 9(43), 17029—17036 |
10 | Wang Q., Kalantar⁃Zadeh K., Kis A., Coleman J., Strano M., Nat. Nanotechnol., 2012, 7, 699—712 |
11 | Ullah H., Haneef Z., Ahmad A., Butler I., Nasir⁃Dara R., Rehman Z., Inorg. Chem. Commun., 2023, 153, 110775 |
12 | Wu Z., Ouyang M., Wang D., Liu X., J. Alloys Compd., 2020, 832, 154970 |
13 | Yadav A., Hunge Y., Dhodamani A., Kang S., Catalysts, 2023, 13(4), 716 |
14 | Chen Y., Cheng W., Ruan J., J. Alloys Compd., 2024, 1009, 176604 |
15 | Nilsson J., Leetmaa M., Wang B., Žguns P., Pašti, I., Sandell A., Skorodumova N., Phys. Status Solodi, 2017, 255(3), 1700344 |
16 | Brown M., Abbas Z., Kleibert A., Green R., Goel A., May S., Squires T., Phys. Rev. X, 2016, 6(1), 011007 |
17 | Kim S., Ji S., Jeong S., Yang H., Lee S., Choi H., Li O., Small, 2024, 20(16), 2307483 |
18 | Rehl B., Ma E., Parshotam S., Dewalt⁃Kerian E., Liu T., Geiger F., Gibbs J., J. Am. Chem. Soc., 2022, 144(36), 16338—16349 |
19 | Předota M., Cummings P., Wesolowski D., J. Phys. Chem. C, 2007, 111(7), 3071—3079 |
20 | Chen S., Singer S., J. Phys. Chem. B, 2019, 123(29), 6364—6384 |
21 | Wang Z., Chen J., Li Y., Dong K., Yu Y., Phys. Chem. Chem. Phys., 2022, 24(10), 5903—5913 |
22 | An Y., Ouyang M., Kong S., Wang G., Chen X., Phys. Chem. Chem. Phys., 2023, 25(19), 13289—13296 |
23 | Liu Y., Zhou Q., Li B., Zeng W., IEEE Sens. J., 2021, 21(23), 26586—26593 |
24 | Tölgyessy P., Vrana B., Krascsenits Z., Talanta, 2011, 87, 152—160 |
25 | He H., Lu P., Wu L., Zhang C., Song Y., Guan P., Wang S., Nanoscale Res. Lett., 2016, 11, 330 |
26 | Deng X., Liang X., Ng S., Wu C., Appl. Surf. Sci., 2019, 484, 1244—1252 |
27 | Cheng W., Wang L., Lao H., Wei Y., Xu J., Weng B., ACS Sustain. Chem. Eng., 2024, 12(46), 17026—17034 |
28 | Gholamali H., Shafiekhani A., Darabi E., Elahi S., Appl. Organomet. Chem., 2018, 32(5), e4316 |
29 | Yao G., Zhao Z., Inorg. Chem. Front., 2022, 9(4), 729—742 |
30 | Li C., Wang P., Li H., Wang M., Zang J., Qi G., Jin Y., Nanoscale, 2018, 10(29), 14290—14297 |
31 | Jian C., Zhang J., Ma X., RSC Adv., 2020, 10(22), 13277—13285 |
32 | Zeng B., Deng R., Zou., Huo C., Wang J., Yang W., Liang Q., Qiu S., Feng A., Shi J., Hong W., Yang Z., Tian Z., Yang Y., CCS Chem., 2023, 5, 830—840 |
33 | Song R., Liu M., Luo B., Geng J., Jing D., AlChE J., 2020, 66(11), 1—10 |
34 | Cao A., Sang L., Yu Z., Zhao Y., Wang X., Wang C., Ma M., Catal. Sci. Technol., 2022, 12(6), 1859—1868 |
35 | Sang L. X., Ma M. N., Chem. J. Chinese Universities, 2023, 44(6), 20220768 |
桑丽霞, 马梦楠. 高等学校化学学报, 2023, 44(6), 20220768 | |
36 | Mammoottil⁃Abraham A., Kammampata S., Ponnurangam S, Thangadurai V., ACS Appl. Mater. Interfaces, 2019, 11(39), 35729—35737 |
37 | Wiedemair M., Hofer T., Phys. Chem. Chem. Phys., 2017, 19(47), 31910—31920 |
38 | Johnson R., Ranganathan S., Phys. Rev. E, 2007, 75, 056706 |
39 | Ma X., Wu J., Liu Q., Constr. Build. Mater., 2021, 285, 122886 |
40 | Liu J., Zeng J., Zhu C., Miao J., Huang Y., Heinz H., Chem. Sci., 2020, 11(33), 8708—8722 |
41 | Hagler A., Huler E., Lifson S., J. Am. Chem. Soc., 1974, 96, 5319—5327 |
42 | Jameel M., Roslan M., Mayzan M., Shaaban I., Rizvi S., Agam M., Sallem S., Assiri M., J. Inorg. Organomet. Polym. Mater., 2022, 34, 322—335 |
43 | Zhang Y., Zeng W., Li Y., Appl. Surf. Sci., 2019, 495, 143619 |
44 | Wang J., Zhou Q., Lu Z., Wei Z., Zeng W., Appl. Surf. Sci., 2019, 490, 124—136 |
45 | Kusama H., Orita H., Sugihara H., Sol. Energy Mater. Sol. Cells, 2008, 92(1), 84—87 |
46 | Ding Z., Chen M., Yuan J., Yu A., Dai H., Bai S., Appl. Surf. Sci., 2024, 652, 159305 |
47 | Shukri M., Sainmin M., Yaakob M., Yahya M., Taib M., Appl. Surf. Sci., 2019, 494, 817—828 |
48 | Luan B., Zhou R., Appl. Phys. Lett., 2016, 108(13), 10451 |
49 | Li Z., Ruiz V., Kanduč M., Dzubiella J., Langmuir, 2020, 36(45), 13457—13468 |
50 | Chen S., Singer S., J. Phys. Chem. B, 2019, 123(29), 6364—6384 |
51 | Yang F., Kong W., Liu S., Li Y., Phys. Plasmas, 2020, 27(11), 113702 |
52 | Moradipour P., Ali⁃Khodadadi A., Mortazavi Y., Javadi A., Chem. Eng. Sci., 2024, 294, 120107 |
53 | Ghaffari A., Rahbar⁃Kelishami A., J. Mol. Liq., 2013, 187, 238—245 |
54 | Li Y., Ni H., Comput. Phys. Commun., 2023, 284, 108599 |
55 | Miao R., Liang Y., Wen R., Jiang Z., Wang Y., Shao Q., Nanoscale, 2024, 16(1), 249—261 |
56 | Wang Z., Guo H., Ning D., Ma X., Zheng L., Smirnov D., Sun K., Chen D., Sun L., Liu X., J. Am. Chem. Soc., 2021, 104(11), 5934—5945 |
57 | Yang Y., Hua H., Lv Z., Zhang M., Liu C., Wen Z., Xie H., He W., Zhao J., Li C., Adv. Funct. Mater., 2023, 33(10), 2212446 |
58 | Li C., Le Y., Wang Y., Chen S., Yang Z., Li J., Cheng J., Tian Z., Nat. Mater., 2019, 18, 697—701 |
59 | Mishra V., Verma Y., Gupta S., Int. J. Nume. Model., 2020, 33(4), 2726 |
60 | Liu X., Tian R., Ding W., Wu L., Li H., Eur. J. Soil Sci., 2019, 70(5), 1073—1081 |
61 | Semwal B., Sharma P., Mehrotra K., Z. Naturforsch. A, 1971, 26, 735—738 |
62 | Jenisha M., Kavirajan S., Harish S., Kamalakannan S., Archana J., Kumar E., Wakiya N., Navaneethan, J. Colloid Interface Sci., 2024, 653, 1150—1165 |
63 | Huang T., Cong X., Wu S., Wu J., Bao Y., Cao M., Wu L., Lin M., Wang X., Tan P., Ren B., Nat. Catal., 2024, 7, 646—654 |
64 | Meletov K., Efimchenko V., Korotkova M., Masalov V., Sukhinina N., Emel’chenko G., Int. J. Hydrogen Energy, 2023, 48(38), 14337—14347 |
65 | Sobie C., Capolungo L., McDowell D., Martinez E., Acta Mater., 2017, 134, 203—210 |
66 | Peng S., Cho K., Qi P., Dai H., Chem. Phys. Lett., 2004, 387(4—6), 271—276 |
67 | Qiao Z., Wang W., Liu N., Huang H., Karuppasamy L., Yang H., Wu J., Int. J. Hydrogen Energy, 2022, 47(96), 40755—40767 |
68 | Sang L., Zhao Y., Niu Y., Bai G., Appl. Surf. Sci., 2018, 430, 496—504 |
[1] | XU Xingyu, XIE Xiaoming, QIU Ping. Ring-opening Mechanism of 2-Phenyl-3-amineazetidine to Form Thiazole or Oxazole [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240547. |
[2] | YANG Siwei, HUANG Xuri. Theoretical Study of B, N Co-doped Fullerene C70 as Non-metal Electrocatalysts for Oxygen Reduction and Evolution [J]. Chem. J. Chinese Universities, 2025, 46(4): 20240490. |
[3] | TAN Yingjia, CHEN Liang, LIU Yulin, NA Risong, ZHAO Xi. Discovery of CDK2 Inhibitors Based on Machine Learning and Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240442. |
[4] | HUANG Zhiyao, LI Li, XU Huaqing, YANG Yifan, WEI Yaoyao, LIU Guokui, XIA Qiying. First-principles Study on the Catalysis of OER/ORR by N-doped Graphene with Defects [J]. Chem. J. Chinese Universities, 2025, 46(2): 20240430. |
[5] | WEN Junqing, WANG Jiahui, ZHANG Jianmin. First-principles Study of Doping and Point Defects Modulating the Photodissociative Water Properties of MoS2/ZnO Heterojunction [J]. Chem. J. Chinese Universities, 2025, 46(2): 20240380. |
[6] | WANG Lu. Ionic Liquid-assisted Hydrothermal Synthesis of 1T-MoS2 and Its Zinc Ion Storage Performance [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240145. |
[7] | HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240099. |
[8] | CHEN Junjie, ZHANG Ruidan, CHEN Yue. First-principles Study of Potential Applications of Monolayer GeTe in Lithium/sodium/potassium Ion Batteries [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240148. |
[9] | HAN Yugui, LIU Changlong, ZHAO Peng, ZHENG Wenwen, LIU Yuepeng, LI Yi. Interaction Between Hot Water Chemical Drive System and Thick Oil Components and Theoretical Simulation Research [J]. Chem. J. Chinese Universities, 2024, 45(6): 20230456. |
[10] | ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035. |
[11] | FANG Yi, LI Yingjie, ZHANG Youhao, REN Yu, HAN Kuihua, ZHAO Jianli. Study on Diffusion Mechanism of CaO/Ca(OH)2 Molecules During Thermochemical Energy Storage Process Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240052. |
[12] | CHEN Rong, WEN Liangying, YUE Dong, YANG Zhongqing. Density Functional Theory Analysis of Coadsorption Behavior of Cl2 and O2 on TiC(100) Surface [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230497. |
[13] | CAO Huawen, TANG Qiufan, QU Bei, HUO Huan, ZHENG Qilong, CAO Yilin, LI Jizhen. Multi-stage Thermal Decomposition Mechanism of Energetic Plasticizer DNTN Triggered by Cleavage of the Nitrate Ester Bond [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230398. |
[14] | CHEN Qingqing, LI Jiangtao, HUANG Xinrong, GU Fang, WANG Haijun. Excess Entropy of Janus Particles Immersed in Hydrogen Bonding Fluids [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230443. |
[15] | ZHAO Can, SUN Guangkai, LEI Bocheng, ZHANG Lili, SUN Zhaoyan, ZHU Youliang. Crystallization Behaviors of Polydisperse Ultra⁃soft Spherical System [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||