Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (6): 20240043.doi: 10.7503/cjcu20240043
• Physical Chemistry • Previous Articles Next Articles
WANG Wenchun, MA Tianci, LIU Chunsheng()
Received:
2024-01-23
Online:
2024-06-10
Published:
2024-04-19
Contact:
LIU Chunsheng
E-mail:csliu@njupt.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Wenchun, MA Tianci, LIU Chunsheng. Theoretical Research of Two-dimensional Semiconductor R57-BN as Anode Material of Sodium-ion Battery[J]. Chem. J. Chinese Universities, 2024, 45(6): 20240043.
Direction | Carrier type | m*(me) | C2D/(N·m‒1) | E1/eV | μ2D/(cm2·V‒1·s‒1) |
---|---|---|---|---|---|
x | Electron | 0.43 | 214.16 | 1.45 | 1208.41 |
Hole | 0.04 | 203.32 | 2.01 | 3842.63 | |
y | Electron | 0.02 | 213.45 | 1.87 | 4827.62 |
Hole | 0.06 | 211.76 | 1.93 | 3472.50 |
Table 1 Calculated effective mass(m*), deformation potential constant(E1), 2D elastic modulus(C2D) and carrier mobility( μ2D) for monolayer R57-BN at 300 K
Direction | Carrier type | m*(me) | C2D/(N·m‒1) | E1/eV | μ2D/(cm2·V‒1·s‒1) |
---|---|---|---|---|---|
x | Electron | 0.43 | 214.16 | 1.45 | 1208.41 |
Hole | 0.04 | 203.32 | 2.01 | 3842.63 | |
y | Electron | 0.02 | 213.45 | 1.87 | 4827.62 |
Hole | 0.06 | 211.76 | 1.93 | 3472.50 |
1 | Zhao L., Zhang T., Li W., Li T., Zhang L., Zhang X., Wang Z., Engineering, 2022, 24, 172—183 |
2 | Khossossi N., Banerjee A., Essaoudi I., Ainane A., Jena P., Ahuja R., J. Power Sources, 2021, 485, 229318 |
3 | Du J., Li Q., Chai J., Jiang L., Zhang Q., Han N., Zhang W., Tang B., Dalton Trans., 2022, 51(25), 9584—9590 |
4 | Chang H., Wu Y. R., Han X., Yi T. F., Energy Mater., 2021, 1(3), 100003 |
5 | Roy K., Banerjee A., Ogale S., ACS Appl. Mater. Interfaces, 2022, 14(18), 20326—20348 |
6 | Yang Q., Li H., Feng C., Ma Q., Zhang L., Wang R., Liu J., Zhang S., Zhou T., Guo Z., Zhang C., Nanoscale, 2022, 14(15), 5814—5823 |
7 | Shamim S. U. D., Hossain M. K., Hasan S. M., Piya A. A., Rahman M. S., Hossain M. A., Ahmed F., Appl. Surf. Sci., 2022, 579, 152147 |
8 | Sheng X. R., Zhang Z. Z., Ding T. J., Liao J. Y., Zhou X. S., Chem. J. Chinese Universities, 2023, 44(5), 20220724 |
盛心茹, 张壮壮, 丁唐婧, 廖家英, 周小四. 高等学校化学学报, 2023, 44(5), 20220724 | |
9 | Liang M., Ma L., Chen B., Liu E., Shi C., He C., Zhao N., Energy Stor. Mater., 2022, 47, 591—601 |
10 | Olsson E., Yu J., Zhang H., Cheng H., Cai Q., Adv. Energy Mater., 2022, 12(25), 2200662 |
11 | Zou R. F., Ye X. J., Zheng X. H., Jia R., Liu C. S., Phys. Chem. Chem. Phys., 2023, 25(42), 28814—28823 |
12 | Zhang C., Pan H., Sun L., Xu F., Ouyang Y., Rosei F., Energy Stor. Mater., 2021, 38, 354—378 |
13 | Yang C. Y., Yang C. H., Chem. J. Chinese Universities, 2023, 44(5), 20220728 |
杨翠云, 杨成浩. 高等学校化学学报, 2023, 44(5), 20220728 | |
14 | Yu Y. X., Appl. Surf. Sci., 2021, 546, 149062 |
15 | Xie Q., Cheng G., Xue T., Huang L., Chen S., Sun Y., Sun M., Wang H., Yu L., Mater. Today Energy, 2022, 24, 100934 |
16 | Khossossi N., Banerjee A., Essaoudi I., Ainane A., Jena P., Ahuja R., J. Power Sources, 2021, 485, 229318 |
17 | Doeff M. M., Ma Y., Visco S. J., Jonghe L. C. D., J. Electrochem. Soc., 1993, 140(12), L169 |
18 | Qiao S., Zhou Q., Ma M., Liu H. K., Dou S. X., Chong S., ACS Namo, 2023, 17(12), 11220—11252 |
19 | Xiao Q., Song Q., Zheng K., Zheng L., Zhu Y., Chen Z., Nano Energy, 2022, 98, 107326 |
20 | Wu Y., Yu Y., Energy Stor. Mater., 2019, 16, 323—343 |
21 | Wu Z., Qi J., Wang W., Zeng Z., He Q., J. Mater. Chem. A, 2021, 9(35), 18793—18817 |
22 | Yoo E. J., Kim J., Hosono E., Zhou H. S., Kudo T., Honma I., Nano Lett., 2008, 8(8), 2277—2282 |
23 | Zhao S., Kang W., Xue J., J. Mater. Chem. A, 2014, 2(44), 19046—19052 |
24 | Mortazavi M., Wang C., Deng J., Shenoy V. B., Medhekar N. V., J. Power Sources, 2014, 268, 279—286 |
25 | Li T. K., Ye X. J., Zheng X. H., Jia R., Liu C. S., ACS Appl. Nano Mater., 2023, 6(14), 13188—13195 |
26 | Xiao B., Li Y., Yu X., Cheng J., ACS Appl. Mater. Interfaces, 2016, 8(51), 35342—35352 |
27 | Liang P., Cao Y., Tai B., Zhang L., Shu H., Li F., Chao D., Du X., J. Alloys Compd., 2017, 704, 152—159 |
28 | Ye X. J., Xu J., Guo Y. D., Liu C. S., Phys. Chem. Chem. Phys., 2021, 23(7), 4386—4393 |
29 | Zhang T., Ma Y., Huang B., Dai Y., ACS Appl. Mater. Interfaces, 2019, 11(6), 6104—6110 |
30 | Kou C., Tian Y., Zhang M., Zurek E., Qu X., Wang X., Yin K., Yan Y., Gao L., Lu M., 2D Mater., 2020, 7(2), 025047 |
31 | Segall M. D., Lindan P. J. D., Probert M. J., Pickard C. J., Hasnip P. J., Clark S. J., Payne M. C., J. Phys. Condens. Matter, 2002, 14(11), 2717 |
32 | Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1997, 77, 3865—3868 |
33 | Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, 132(15), 154104 |
34 | Govind N., Petersen M., Fitzgerald G., King⁃Smith D., Andzelm J., Comput. Mater. Sci., 2003, 28(2), 250—258 |
35 | Martyna G. J., Klein M. L., Tuckerman M., J. Chem. Phys., 1992, 97(4), 2635—2643 |
36 | Kilic M. E., Rad S. E., Ipek S., Jahangirov S., Phys. Rev. Mater., 2022, 6(6), 064007 |
37 | Mishra P., Singh D., Sonvane Y., Ahuja R., Energy Fuels, 2020, 4(5), 2363—2369 |
38 | Qi J., Wang S., Wang J., Umezawa N., Biatov V. A., Hosono H., J. Phys. Chem. Lett., 2021, 12(20), 4823—4832 |
39 | Kilic M. E., Lee K. R., Nanoscale, 2021, 13(20), 9303—9314 |
40 | Li X. D., Cheng X. L., Chem. Phys. Lett., 2018, 694, 102—106 |
41 | He C., Sun L., Zhang C., Peng X., Zhang K., Zhong J., Phys. Chem. Chem. Phys., 2012, 14(31), 10967—10971 |
42 | Cahangirov S., Topsakal M., Aktürk E., Sahin H., Ciraci S., Phys. Rev. Lett., 2009, 102(23), 236804 |
43 | Tornatzky H., Gillen R., Uchiyama H., Maultzsch J., Phys. Rev. B, 2019, 99(14), 144309 |
44 | Born M., Math. Proc. Cambridge Philos. Soc., 1940, 36(2), 160—172 |
45 | Bruzzone S., Fiori G., Appl. Phys. Lett., 2011, 99(22), 222108—222111 |
46 | Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A., Nat. Nanotechnol., 2011, 6(3), 147—150 |
47 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666—669 |
48 | Qiao J., Kong X., Hu Z. X., Yang F., Ji W., Nat. Commun., 2014, 5(1), 4475 |
49 | Averill F. W., Phys. Rev. B, 1972, 6(10), 3637 |
50 | Deb J., Ahuja R., Sarkar U., ACS Appl. Nano Mater., 2022, 5(8), 10572—10582 |
51 | Ling F., Liu X., Li L., Zhou X., Tang X., Li Y., Jing C., Wang Y., Xiang G., Jiang S., Appl. Surf. Sci., 2022, 573, 151550 |
52 | Zhang X., Hu J., Cheng Y., Yang H. Y., Yao Y., Yang S. A., Nanoscale, 2016, 8(33), 15340—15347 |
53 | Ye X. J., Zhu G. L., Meng L., Guo Y. D., Liu C. S., Phys. Chem. Chem. Phys., 2021, 23(21), 12371—12375 |
54 | Samad A., Shafique A., Shin Y. H., Nanotechnology, 2017, 28(17), 175401 |
55 | Zhang X., Yu Z., Wang S. S., Guan S., Yang H. Y., Yao Y., Yang S. A., J. Mater. Chem. A, 2016, 4(39), 15224—15231 |
56 | Hu J., Liu Y., Liu N., Li J., Ouyang C., Phys. Chem. Chem. Phys., 2020, 22(6), 3281—3289 |
57 | Jiang H. R., Shyy W., Liu M., Wei L., Wu M. C., Zhao T. S., J. Mater. Chem. A, 2017, 5(2), 672—679 |
58 | Zhao S., Kang W., Xue J., J. Mater. Chem. A, 2014, 2(44), 19046—19052 |
59 | Rajput K., Kumar V., Thomas S., Zaeem M. A., Roy D. R., 2D Mater., 2021, 8(3), 035015 |
60 | Khossossi N., Banerjee A., Benhouria Y., Essaoudi I., Ainane A., Ahuja R., Phys. Chem. Chem. Phys., 2019, 21(33), 18328—18337 |
61 | Bo T., Liu P. F., Xu J., Zhang J., Chen Y., Eriksson O., Wang F., Wang B. T., Phys. Chem. Chem. Phys., 2018, 20(34), 22168—22178 |
[1] | DONG Bangda, ZHAI Yunyun, LIU Haiqing, HUANG Zhenpeng, LI Zuguang, LI Lei. Fabrication of MoS2 Nanosheets Functionalized PAN Lithium Metal Battery Separator and Its Inhibition of Lithium Dendrite [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230325. |
[2] | MENG Zhicheng, LU Yong, YAN Zhenhua, CHEN Jun. Preparation of Disodium Hydroquinone as Cathode Material for Sodium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230158. |
[3] | ZHANG Yichao, ZHAO Fulai, WANG Yu, WANG Yaling, SHEN Yongtao, FENG Yiyu, FENG Wei. Experimental Optimization and Theoretical Simulation of High Performance Field-effect Transistors Based on Multilayer Tungsten Diselenide [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220113. |
[4] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. |
[5] | ZOU Junyan, ZHANG Yanyan, CHEN Shi, SHAO Huaiyu, TANG Yuxin. Recent Development on Surface-interface Chemistry of All-solid-state Lithium Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1005. |
[6] | WANG Wei, LU Xiangchao, ZHOU Lijun, LU Yizhen, CAO Yang. Design, Construction and Performance Research of Functional Devices Based on Two-dimensional Piezoelectric Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 595. |
[7] | DENG Yaqian, WU Zhitan, LV Wei, TAO Ying, YANG Quanhong. Gelation of Two⁃dimensional Materials for Energy Storage Applications [J]. Chem. J. Chinese Universities, 2021, 42(2): 380. |
[8] | XIN Weiwen, WEN Liping. Two-dimensional Materials for Osmotic Energy Conversion [J]. Chem. J. Chinese Universities, 2021, 42(2): 445. |
[9] | SHI Jiangwei, MENG Nannan, GUO Yamei, YU Yifu, ZHANG Bin. Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(2): 492. |
[10] | DONG Qizheng, ZHAI Jin. Application of Biomimetic Nanofluidic Channel Based on Two-dimensional Materials in Energy Conversion [J]. Chem. J. Chinese Universities, 2021, 42(2): 432. |
[11] | CHEN Minghua, LI Hongwu, FAN He, LI Yu, LIU Weiduo, XIA Xinhui, CHEN Qingguo. Research Progress of Two-dimensional Transition Metal Dichalcogenides in Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 539. |
[12] | XIE Chen, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress of Aptamer Functionalized Two-dimensional Materials Field Effect Transistor Sensors [J]. Chem. J. Chinese Universities, 2021, 42(11): 3406. |
[13] | ZHANG Xin, ZHAO Fulai, WANG Yu, LIANG Xuejing, FENG Yiyu, FENG Wei. Preparation and Electrical Properties of Germanium Telluride Field Effect Transistor [J]. Chem. J. Chinese Universities, 2020, 41(9): 2032. |
[14] | HUANG Wenjuan, HOU Huayi, CHEN Xiangbai, ZHAI Tianyou. Synthesis of InSe Nanoflakes with Near-infrared Photoresponse Grown by Chemical Vapor Deposition † [J]. Chem. J. Chinese Universities, 2020, 41(4): 682. |
[15] | LIU Ben,ZHANG Xingying,CHEN Shaoyun,HU Chenglong. Preparation and Electrochemical Energy Storage Performance of One Dimensional Orderly Polyaniline Nanowires Array† [J]. Chem. J. Chinese Universities, 2019, 40(3): 498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||