Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (4): 682.doi: 10.7503/cjcu20190662
Previous Articles Next Articles
HUANG Wenjuan1,HOU Huayi1,CHEN Xiangbai1,*(),ZHAI Tianyou2,*(
)
Received:
2019-12-12
Online:
2020-04-10
Published:
2020-02-26
Contact:
Xiangbai CHEN,Tianyou ZHAI
E-mail:xchen@wit.edu.cn;zhaity@hust.edu.cn
Supported by:
CLC Number:
TrendMD:
HUANG Wenjuan, HOU Huayi, CHEN Xiangbai, ZHAI Tianyou. Synthesis of InSe Nanoflakes with Near-infrared Photoresponse Grown by Chemical Vapor Deposition †[J]. Chem. J. Chinese Universities, 2020, 41(4): 682.
Fig.3 Correlation of average flake sizes and thickness with growth temperature(A), AFM height image of a typical InSe flake obtained at 600 ℃(B) and Raman spectra(C) of the samples of Fig.2 (A) The vertical error bars indicate standard deviations of the flake sizes and thickness in statistical analysis. (C) a. 580 ℃; b. 590 ℃; c. 600 ℃; d. 610 ℃; e. 620 ℃; f. 650 ℃.
Fig.4 Schematic image of the photodetector(A) and spectral response curve(B) of the InSe nanoflake, I-V characteristics(C) of the device in the dark and under light illumination with different wavelengths at Vbias=1 VInset of (B): an optical image of the device.
Fig.5 I-V characteristics(A) of the device in the dark and time-resolved photoresponse of the device(B) under 808 nm NIR light illumination with different power intensities at Vbias=1 V corresponding fitting curve of photocurrent versus incident light intensities by power law(C)
Material | λ/nm | Vbias/V | Rλ/(A·W-1) | EQE(%) | D*/Jones | Time/(rise/decay) | Ref. |
---|---|---|---|---|---|---|---|
BP-ME | 808 | 0.2 | <4.89×10-3 | | | | [37] |
MoS2-ME | 850 | | 9×10-5 | | 5×107 | | [38] |
In2Se3-CVD | 850 | 1 | ca. 0.5 | 18 | | | [39] |
Ta2NiSe5-ME | 808 | 0.1 | 17.21 | 2645 | | 3.0/3.3 | [40] |
SnSe2-CVD | 800 | 1 | 1.9 | | | | [41] |
ReSe2-CVD | 808 | 5 | 2.98 | 458 | | 5.47/8.41 | [36] |
InSe-ME | 850 | 5 | ca. 3×103 | | ca. 1012 | | [20] |
InSe-CVD | 808 | 1 | 1.5 | 230 | 3.1×108 | 0.5/0.8 | This work |
Material | λ/nm | Vbias/V | Rλ/(A·W-1) | EQE(%) | D*/Jones | Time/(rise/decay) | Ref. |
---|---|---|---|---|---|---|---|
BP-ME | 808 | 0.2 | <4.89×10-3 | | | | [37] |
MoS2-ME | 850 | | 9×10-5 | | 5×107 | | [38] |
In2Se3-CVD | 850 | 1 | ca. 0.5 | 18 | | | [39] |
Ta2NiSe5-ME | 808 | 0.1 | 17.21 | 2645 | | 3.0/3.3 | [40] |
SnSe2-CVD | 800 | 1 | 1.9 | | | | [41] |
ReSe2-CVD | 808 | 5 | 2.98 | 458 | | 5.47/8.41 | [36] |
InSe-ME | 850 | 5 | ca. 3×103 | | ca. 1012 | | [20] |
InSe-CVD | 808 | 1 | 1.5 | 230 | 3.1×108 | 0.5/0.8 | This work |
Fig.6 Time-resolved photoresponse of the device(A) and rise and decay curves measured using an oscilloscope and fitted with a single-exponential function(B) under 808 nm excitation at Vbias= 1 V
[1] | Xu M. S., Liang T., Shi M. M., Chen H. Z., Chem. Rev., 2013, 113( 5), 3766— 3798 |
[2] | Xie C., Mak C. H., Tao X. M., Yan F., Adv. Funct. Mater., 2017, 27( 19), 1603886 |
[3] | Yuan X., Tang L., Liu S. S., Wang P., Chen Z. G., Zhang C., Liu Y. W., Wang W. Y., Zou Y. C., Liu C., Guo N., Zou J., Zhou P., Hu W. D., Xiu F. X., Nano Lett., 2015, 15( 5), 3571— 3577 |
[4] | Wang F., Wang Z. X., Yin L., Cheng R. Q., Wang J. J., Wen Y., Shifa T. A., Wang F. M., Zhang Y., Zhan X. Y., He J., Chem. Soc. Rev., 2018, 47( 16), 6296— 6341 |
[5] | Wang R. Y., Zhou F. Y., Lv L., Zhou S. S., Yu Y. W., Zhuge F. W., Li H. Q., Gan L., Zhai T. Y., CCS Chem., 2019, 1( 3), 268— 277 |
[6] | Li L., Han W., Pi L. J., Niu P., Han J. B., Wang C. L., Su B., Li H. Q., Xiong J., Bando Y., Zhai T. Y ., InfoMat, 2019, 1( 1), 54— 73 |
[7] | Zeng Z. H., Li S. C., Liu Y., Xu J. J., Zhou Y. L., Chem. J. Chinese Universities, 2017, 38 1), 20— 27 |
( 曾泽华,李诗纯,刘渝,徐金江,周元林.高等学校化学学报, 2017, 38(1), 20— 27) | |
[8] | Lu Y., Dai T. Y., Lu C. H., Cao C. C., Zhang W. J., Xu W. F., Min H. H., Yang X. F., Ceram. Int., 2019, 45( 18), 24903— 24908 |
[9] | Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M., Nat. Nanotechnol., 2014, 9( 10), 780— 793 |
[10] | Rogalski A., Antoszewski J., Faraone L., J. Appl. Phys., 2009, 105( 9), 091101 |
[11] | Pil Ju K., Abdelkader A., Nam-Hoon K., Adarsh S., Semicond. Sci. Technol., 2017, 32( 6), 065015 |
[12] | Zhang K. N., Zhang T. N., Cheng G. H., Li T. X., Wang S. X., Wei W., Zhou X. H., Yu W. W., Sun Y., Wang P., Zhang D., Zeng C. G., Wang X. J., Hu W. D., Fan H. J., Shen G. Z., Chen X., Duan X. F., Chang K., Dai N., ACS Nano, 2016, 10( 3), 3852— 3858 |
[13] | Xu K., Yin L., Huang Y., Shifa T. A., Chu J. W., Wang F., Cheng R. Q., Wang Z. X., He J ., Nanoscale, 2016, 8( 38), 16802— 16818 |
[14] | Huang W. J., Gan L., Li H. Q., Ma Y., Zhai T. Y ., CrystEngComm, 2016, 18( 22), 3968— 3984 |
[15] | Bandurin D. A., Tyurnina A. V., Yu G. L., Mishchenko A., Zólyomi V., Morozov S. V., Kumar R. K., Gorbachev R. V., Kudrynskyi Z. R., Pezzini S., Kovalyuk Z. D., Zeitler U., Novoselov K. S., Patanè A., Eaves L., Grigorieva I. V., Fal'ko V. I., Geim A. K., Cao Y., Nat. Nanotechnol., 2017, 12( 3), 223— 227 |
[16] | Wu F., Xia H., Sun H. D., Zhang J. W., Gong F., Wang Z., Chen L., Wang P., Long M. S., Wu X., Wang J. L., Ren W. C., Chen X. S., Lu W., Hu W. D., Adv. Funct. Mater., 2019, 29( 12), 1900314 |
[17] | Zhou J. D., Shi J., Zeng Q. S., Chen Y., Lin N., Liu F. C., Yu T., Suenaga K. Z., Liu X. F., Lin J. H., Liu Z., 2D Mater. , 2018, 5( 2), 025019 |
[18] | Mudd G. W., Svatek S. A., Ren T., Patanè A., Makarovsky O., Eaves L., Beton P. H., Kovalyuk Z. D., Lashkarev G. V., Kudrynskyi Z. R., Dmitriev A. I., Adv. Mater., 2013, 25( 40), 5714— 5718 |
[19] | Tamalampudi S. R., Lu Y. Y., Kumar U. R., Sankar R., Liao C. D., Moorthy B. K., Cheng C. H., Chou F. C., Chen Y. T., Nano Lett., 2014, 14( 5), 2800— 2806 |
[20] | Feng W., Wu J. B., Li X. L., Zheng W., Zhou X., Xiao K., Cao W. W., Yang B., Idrobo J. C., Basile L., Tian W. Q., Tan P. H., Hu P. A., J. Mater. Chem. C, 2015, 3( 27), 7022— 7028 |
[21] | Yang Z. B., Jie W. J., Mak C. H., Lin S. H., Lin H. H., Yang X. F., Yan F., Lau S. P., Hao J. H., ACS Nano, 2017, 11( 4), 4225— 4236 |
[22] | Lin M., Wu D., Zhou Y., Huang W., Jiang W., Zheng W. S., Zhao S. L., Jin C. H., Guo Y. F., Peng H. L., Liu Z. F., J. Am. Chem. Soc., 2013, 135( 36), 13274— 13277 |
[23] | Han G., Chen Z. G., Drennan J., Zou J ., Small, 2014, 10( 14), 2747— 2765 |
[24] | Sreekumar R., Sajeesh T. H., Abe T., Kashiwaba Y., Sudha Kartha C., Vijayakumar K. P., Phys. Status Solidi B, 2013, 250( 1), 95— 102 |
[25] | Huang W. J., Gan L., Li H. Q., Ma Y., Zhai T. Y., Chem. Eur. J., 2018, 24( 58), 15678— 15684 |
[26] | Hu Y. X., Feng W., Dai M. J., Yang H. H., Chen X. S., Liu G. B., Zhang S. C., Hu P. A., Semicond. Sci. Technol., 2018, 33( 12), 125002 |
[27] | Li X. S., Magnuson C. W., Venugopal A., Tromp R. M., Hannon J. B., Vogel E. M., Colombo L., Ruoff R. S., J. Am. Chem. Soc., 2011, 133( 9), 2816— 2819 |
[28] | Zhou S. S., Gan L., Wang D. L., Li H. Q., Zhai T. Y., Nano Res., 2018, 11( 6), 2909— 2931 |
[29] | Li H., Cao J., Zheng W. S., Chen Y. L, Wu D., Dang W. H., Wang K., Peng H. L., Liu Z. F., J. Am. Chem. Soc., 2012, 134( 14), 6132— 6135 |
[30] | Li X. B., Cui F. F., Feng Q. L., Wang G., Xu X. S., Wu J. X., Mao N. N., Liang X., Zhang Z. Y., Zhang J., Xu H ., Nanoscale, 2016, 8( 45), 18956— 18962 |
[31] | Yan C. Y., Gan L., Zhou X., Guo J., Huang W. J., Huang J. W., Jin B., Xiong J., Zhai T. Y., Li Y. R., Adv. Funct. Mater., 2017, 27( 39), 1702918 |
[32] | Zhang X., Tan Q. H., Wu J. B., Shi W., Tan P. H ., Nanoscale, 2016, 8( 12), 6435— 6450 |
[33] | Lei S., Ge L., Najmaei S., George A., Kappera R., Lou J., Chhowalla M., Yamaguchi H., Gupta G., Vajtai R., Mohite A. D., Ajayan P. M., ACS Nano, 2014, 8( 2), 1263— 1272 |
[34] | Weszka J., Daniel P., Burian A. M., Burian A., Zelechower M., Solid State Commun., 2001, 119( 8), 533— 537 |
[35] | Ho C. H., Lin M. H., Pan C. C., Sensor Actuat B: Chem., 2015, 209( 1), 811— 819 |
[36] | Hafeez M., Gan L., Li H. Q., Ma Y., Zhai T. Y., Adv. Mater., 2016, 28( 37), 8296— 8301 |
[37] | Buscema M., Groenendijk D. J., Blanter S. I., Steele G. A., van der Zant H. S. J., Castellanos-Gomez A., Nano Lett., 2014, 14( 6), 3347— 3352 |
[38] | Choi W., Cho M. Y., Konar A., Lee J. H., Cha G. B., Hong S. C., Kim S., Kim J., Jena D., Joo J., Kim S., Adv. Mater., 2012, 24( 43), 5832— 5836 |
[39] | Tang L., Teng C. J., Luo Y. T., Khan U., Pan H. Y., Cai Z. Y., Zhao Y., Liu B. L., Cheng H. M ., Research, 2019, 2019, 2763704 |
[40] | Li L., Wang W. K., Gan L., Zhou N., Zhu X. D., Zhang Q., Li H. Q., Tian M. L., Zhai T. Y., Adv. Funct. Mater., 2016, 26( 45), 8281— 8289 |
[41] | Huang Y., Xu K., Wang Z. X., Shifa T. A., Wang Q. S., Wang F., Jiang C., He J ., Nanoscale, 2015, 7( 41), 17375— 17380 |
[42] | Chang Y. R., Ho P. H., Wen C. Y., Chen T. P., Li S. S., Wang J. Y., Li M. K., Tsai C. A., Sankar R., Wang W. H., Chiu P. W., Chou F. C., Chen C. W., ACS Photonics., 2017, 4( 11), 2930— 2936 |
[1] | ZHANG Yichao, ZHAO Fulai, WANG Yu, WANG Yaling, SHEN Yongtao, FENG Yiyu, FENG Wei. Experimental Optimization and Theoretical Simulation of High Performance Field-effect Transistors Based on Multilayer Tungsten Diselenide [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220113. |
[2] | YAN Wenqing, ZHANG Zeyao, LI Yan. Controlled Preparation of Carbon Nanotube Transparent Conductive Films [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210626. |
[3] | XIE Fan, CHEN Shanshan, ZHUO Longhai, LU Zhaoqing, GAO Kun, DAI Qiyang. Fabrication of Poly(p-xylene) Nanofiber Arrays by CVD Liquid Crystal Template Method and Their Degradability [J]. Chem. J. Chinese Universities, 2021, 42(8): 2643. |
[4] | WANG Wei, LU Xiangchao, ZHOU Lijun, LU Yizhen, CAO Yang. Design, Construction and Performance Research of Functional Devices Based on Two-dimensional Piezoelectric Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 595. |
[5] | YANG Pengfei, SHI Yuping, ZHANG Yanfeng. Large-scale Syntheses and Versatile Applications of Two-dimensional Metal Dichalcogenides [J]. Chem. J. Chinese Universities, 2021, 42(2): 504. |
[6] | DENG Yaqian, WU Zhitan, LV Wei, TAO Ying, YANG Quanhong. Gelation of Two⁃dimensional Materials for Energy Storage Applications [J]. Chem. J. Chinese Universities, 2021, 42(2): 380. |
[7] | XIN Weiwen, WEN Liping. Two-dimensional Materials for Osmotic Energy Conversion [J]. Chem. J. Chinese Universities, 2021, 42(2): 445. |
[8] | SHI Jiangwei, MENG Nannan, GUO Yamei, YU Yifu, ZHANG Bin. Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(2): 492. |
[9] | DONG Qizheng, ZHAI Jin. Application of Biomimetic Nanofluidic Channel Based on Two-dimensional Materials in Energy Conversion [J]. Chem. J. Chinese Universities, 2021, 42(2): 432. |
[10] | CHEN Minghua, LI Hongwu, FAN He, LI Yu, LIU Weiduo, XIA Xinhui, CHEN Qingguo. Research Progress of Two-dimensional Transition Metal Dichalcogenides in Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 539. |
[11] | XIE Chen, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress of Aptamer Functionalized Two-dimensional Materials Field Effect Transistor Sensors [J]. Chem. J. Chinese Universities, 2021, 42(11): 3406. |
[12] | ZHANG Xin, ZHAO Fulai, WANG Yu, LIANG Xuejing, FENG Yiyu, FENG Wei. Preparation and Electrical Properties of Germanium Telluride Field Effect Transistor [J]. Chem. J. Chinese Universities, 2020, 41(9): 2032. |
[13] | LI Kangming,CHEN Jia,YI Yangjie,YAN Zhongzhong,YE Jiao,LONG Chuyun,LIU Aiping,HU Aixi,LI Jianming. Design, Synthesis and Insecticidal Activity of 1-(4-Chlorophenyl)-2-cyclopropylpropan-1-one Oxime Ether [J]. Chem. J. Chinese Universities, 2020, 41(5): 1026. |
[14] | ZHU Ling,WANG Yuchen,ZHAO Jiangyuan,WEN Mengliang,LI Minggang,HAN Xiulin. Transformation of Ginsenoside Rb3 and C-Mx by Recombinant β-Xylosidase [J]. Chem. J. Chinese Universities, 2020, 41(5): 1010. |
[15] | LI Kangming, LI Yansai, YI Yangjie, XU Leitao, YE Jiao, OU Xiaoming, LI Jianming, HU Aixi. Design, Synthesis and Biological Activity of 5-Pyrazole Carboxamides † [J]. Chem. J. Chinese Universities, 2020, 41(4): 716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||