Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (1): 29.doi: 10.7503/cjcu20200382
Special Issue: 分子筛功能材料 2021年,42卷,第1期
• Review • Previous Articles Next Articles
JIAO Meichen, JIANG Jingang, XU Hao(), WU Peng(
)
Received:
2020-06-23
Online:
2021-01-10
Published:
2021-01-12
Contact:
WU Peng
E-mail:hxu@chem.ecnu.edu.cn;pwu@chem.ecnu.edu.cn
Supported by:
CLC Number:
TrendMD:
JIAO Meichen, JIANG Jingang, XU Hao, WU Peng. Structural Stabilization, Modification and Catalytic Applications of Germanosilicates[J]. Chem. J. Chinese Universities, 2021, 42(1): 29.
Strategy | Germanosilicate precursor | Stabilized analogue | Ref. |
---|---|---|---|
Post?synthetic wet chemistry method | ITQ?17 | Al?BEC | [ |
Low?temperature plasma treatment | ITQ?17 | Ti?BEC, Si?BEC, Ti, Si?BEC | [ |
Isomorphous substitution | IM?12, IM?20, ITQ?17, ITQ?24 | Corresponding high?silica zeolites | [ |
Acid treatment | Ge?rich ITQ?22 | Si?rich ITQ?22, Al?ITQ?22 | [ |
Hydroxyl free radical route | Ge?rich Ti?UTL | Highly siliceous Ti?UTL | [ |
Crystallization?disassembly?dissolution? recrystallization(CDDR) | IM?20, ECNU?24 | IM?20?RC, IM?20?RC?Al, ECNU?24?RC | [ |
Strategy | Germanosilicate precursor | Stabilized analogue | Ref. |
---|---|---|---|
Post?synthetic wet chemistry method | ITQ?17 | Al?BEC | [ |
Low?temperature plasma treatment | ITQ?17 | Ti?BEC, Si?BEC, Ti, Si?BEC | [ |
Isomorphous substitution | IM?12, IM?20, ITQ?17, ITQ?24 | Corresponding high?silica zeolites | [ |
Acid treatment | Ge?rich ITQ?22 | Si?rich ITQ?22, Al?ITQ?22 | [ |
Hydroxyl free radical route | Ge?rich Ti?UTL | Highly siliceous Ti?UTL | [ |
Crystallization?disassembly?dissolution? recrystallization(CDDR) | IM?20, ECNU?24 | IM?20?RC, IM?20?RC?Al, ECNU?24?RC | [ |
Method | Code | Parent zeolite | Novel zeolite | Pore structure | Ref. |
---|---|---|---|---|---|
Acid?assisted | UTL | IM?12 | IPC?2 (OKO) | 12×10 | [ |
IPC?4 (PCR) | 10×8 | [ | |||
IPC?6 (*PCS) | 10×8+12×10 | [ | |||
IPC?7 | 12×10+14×12 | [ | |||
IPC?9 | 10×7 | [ | |||
IPC?10 | 12×9 | [ | |||
UOV | IM?17 | IPC?12 | 12?8(1D) | [ | |
*CTHa | SAZ?1 | IPC?15 | 10 | [ | |
IPC?16 | 12×8 | [ | |||
Alkaline?assisted | *CTH | CIT?13 | ECNU?21 (EWO) | 10 | [ |
ECNU?23 | 12×8 | [ | |||
Microwave?assisted | IWW | Ge?IWW2.9 | IPC?5M | (12?8)×10+(12?8)×8 | [ |
UTL | IM?12 | IPC?6Mwb | 10×8+12×10 | [ | |
Pressure?assisted | UTL | IM?12 | IPC?2 | 12×10 | [ |
Vapor?phase?transport(VPT) | IWW | Ge?IWW3.7 | IPC?18 | (12?8)×8 | [ |
Method | Code | Parent zeolite | Novel zeolite | Pore structure | Ref. |
---|---|---|---|---|---|
Acid?assisted | UTL | IM?12 | IPC?2 (OKO) | 12×10 | [ |
IPC?4 (PCR) | 10×8 | [ | |||
IPC?6 (*PCS) | 10×8+12×10 | [ | |||
IPC?7 | 12×10+14×12 | [ | |||
IPC?9 | 10×7 | [ | |||
IPC?10 | 12×9 | [ | |||
UOV | IM?17 | IPC?12 | 12?8(1D) | [ | |
*CTHa | SAZ?1 | IPC?15 | 10 | [ | |
IPC?16 | 12×8 | [ | |||
Alkaline?assisted | *CTH | CIT?13 | ECNU?21 (EWO) | 10 | [ |
ECNU?23 | 12×8 | [ | |||
Microwave?assisted | IWW | Ge?IWW2.9 | IPC?5M | (12?8)×10+(12?8)×8 | [ |
UTL | IM?12 | IPC?6Mwb | 10×8+12×10 | [ | |
Pressure?assisted | UTL | IM?12 | IPC?2 | 12×10 | [ |
Vapor?phase?transport(VPT) | IWW | Ge?IWW3.7 | IPC?18 | (12?8)×8 | [ |
1 | Treacy M. M. J., Rivin I., Balkovsky E., Randall K. H., Foster M. D., Micropor. Mesopor. Mater., 2004, 74(1―3), 121—132 |
2 | Pophale R., Cheeseman P. A., Deem M. W., Phys. Chem. Chem. Phys., 2011, 13(27), 12407—12412 |
3 | Corma A., Fornés V., Díaz U., Chem. Commun., 2001, (24), 2642—2643 |
4 | Wei X., Smirniotis P. G., Micropor. Mesopor. Mater., 2006, 89(1―3), 170—178 |
5 | Xiao F. S., Wu Q., Zhu L., Chu Y., Liu X., Zhang C., Zhang J., Xu H., Xu J., Deng F., Feng Z., Meng X., Angew. Chem., 2019, 131(35), 12266—12270 |
6 | Corma A., Fornés V., Martı́nez⁃Triguero J., Pergher S. B., J. Catal., 1999, 186(1), 57—63 |
7 | Ren L., Guo Q., Kumar P., Orazov M., Xu D., Alhassan S. M., Mkhoyan K. A., Davis M. E., Tsapatsis M., Angew. Chem. Int. Ed., 2015, 127(37), 10848—10851 |
8 | Wang J., Xu L., Zhang K., Peng H., Wu H., Jiang J. G., Liu Y., Wu P., J. Catal., 2012, 288, 16—23 |
9 | Corma A., Fornes V., Pergher S. B., Maesen T. L. M., Buglass J. G., Nature, 1998, 396(6709), 353—356 |
10 | Kasneryk V. I., Shamzhy M. V., Opanasenko M. V., Čejka J., J. Energy Chem., 2016, 25(2), 318—326 |
11 | Dijkmans J., Dusselier M., Janssens W., Trekels M., Vantomme A., Breynaert E., Kirschhock C., Sels B. F., ACS Catal., 2016, 6(1), 31—46 |
12 | Li Y., Yu J., Xu R., Angew. Chem. Int. Ed., 2013, 52(6), 1673—1677 |
13 | Wu Q. M., Qang Y. Q., Meng X. J., Xiao F. S., Chem. J. Chinese Universities, 2021, 42(1), 21—28(吴勤明, 王叶青, 孟祥举, 肖丰收, 高等学校化学学报, 2021, 42(1), 21—28) |
14 | Jiang J., Jordá J. L., Díaz⁃Casbañas M. J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 122(29), 5106—5108 |
15 | Corma A., Díaz⁃Casbañas M. J., Jiang J., Afeworki M., Dorset D. L., Soled S. L., Strohmaier K. G., Proc. Natl. Acad. Sci. USA, 2010, 107(32), 13997—14002 |
16 | Corma A., Díaz⁃Casbañas M. J., Jordá J. L., Martínez C., Moliner M., Nature, 2006, 443, 842—845 |
17 | Corma A., Díaz⁃Casbañas M. J., Rey F., Nicolopoulus S., Boulahya K., Chem. Commun., 2004, 10(12), 1356—1357 |
18 | Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science, 2004, 304(5673), 990—992 |
19 | Jiang J. X., Jordá J. L., Yu J. H., Baumes L. A., Mugnaioli E., Díaz⁃Casbañas M. J., Kolb U., Corma A., Science, 2011, 333(6046), 1131—1134 |
20 | Blasco T., Corma A., Díaz⁃Casbañas M. J., Rey F., Vidal⁃Moya J. A., Zicovich⁃Wilson C. M., J. Phys. Chem. B, 2002, 106(10), 2634—2642 |
21 | Conradsson T., Dadachov M. S., Zou X. D., Micropor. Mesopor. Mater., 2000, 41(1―3), 183—191 |
22 | Cantín Á., Corma A., Díaz‐Cabañas M., Jordá J., Moliner M., Rey F., Angew. Chem., 2006, 118(47), 8181—8183 |
23 | Corma A., Rey F., Rius J., Sabater M. J., Valencia S., Nature, 2004, 431, 287—290 |
24 | Jordá J. L., Cantín A., Corma A., Díaz⁃Casbañas M. J., Leiva S., Moliner M., Rey F., Sabater M. J., Valencia S., Z. Kristallogr. Suppl., 2007, 26(2007), 393—398 |
25 | Odoh S. O., Deem M. W., Gagliardi L., J. Phys. Chem. C, 2014, 118(46), 26939—26946 |
26 | Corma A., Díaz⁃Casbañas M. J., García H., Palomares E., Chem. Commun., 2001, (20), 2148—2149 |
27 | Pulido A., Sastre G., Corma A., ChemPhysChem, 2006, 7(5), 1092—1099 |
28 | Jiang J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 49(18), 3120—3145 |
29 | Harris K. D. M., Thomas S. J. M., ChemCatChem, 2009, 1(2), 223—231 |
30 | Zwijnenburg M. A., Bromley S. T., Jansen J. C., Maschmeyer T., Micropor. Mesopor. Mater., 2004, 73(3), 171—174 |
31 | Ogo S., Okuno Y., Sekine H., Manabe S., Yabe T., Onda A., Sekine Y., Chemistry. Select., 2017, 2(22), 6201—6205 |
32 | Zhu Z., Xu H., Jiang J., Wu P., J. Phys. Chem. C, 2016, 120(41), 23613—23624 |
33 | Wu P., Komatsu T., Yashima T., J. Phys. Chem., 1996, 100(24), 10316—10322 |
34 | Chen C. Y., Zones S. I., Stud. Surf. Sci. Catal., 2001, 135, 211—218 |
35 | Gao F., Jaber M., Bozhilov K., Vicente A., Fernandez C., Valtchev V., J. Am. Chem. Soc., 2009, 131(45), 16580—16586 |
36 | El⁃Roz M., Lakiss L., Vicente A., Bozhilov K. N., Thibault⁃Starzyk F., Valtchev V., Chem. Sci., 2014, 5(1), 68—80 |
37 | Xu H., Jiang J. G., Yang B., Zhang L., He M., Wu P., Angew. Chem. Int. Ed., 2014, 53(5), 1355—1359 |
38 | Burel L., Kasian N., Tuel A., Angew. Chem. Int. Ed., 2014, 53(5), 1360—1363 |
39 | Shi D., Xu L., Chen P., Ma T., Lin C., Wang X., Xu D., Sun J., Chem. Commun., 2019, 55(10), 1390—1393 |
40 | Peng M., Jiang J., Liu X., Ma Y., Jiao M., Xu H., Wu H., He M., Wu P., Chem. Eur. J., 2018, 24(50), 13297—13305 |
41 | Groen J. C., Sano T., Moulijn J. A., Pérez⁃Ramírez J., Catal. Today, 2007, 251(1), 21—27 |
42 | Scherzer J., Bass J. L., Catal. Today, 1973, 28(1), 101—115 |
43 | Roth W. D., Nachtigall P., Morris R. E., Čejka J., Chem. Rev., 2014, 114(9), 4807—4837 |
44 | Roth W. J., Gil B., Makowski W., Marszalek B., Eliášová P., Chem. Soc. Rev., 2016, 45(12), 3400—3438 |
45 | Roth W. J., Shvets O. V., Shamzhy M., Chlubná P., Kubů M., Nachtigall P., Čejka J., J. Am. Chem. Soc., 2011, 133(16), 6130—6133 |
46 | Opanasenko M., Parker Wallace O’Neil, Shamzhy M., Montanari E., Bellettato M., Mazur M., Millini R., Čejka J., J. Am. Chem. Soc., 2014, 136(6), 2511—2519 |
47 | Eliášová P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Čejka J., Chem. Soc. Rev., 2015, 44(20), 7177—7206 |
48 | Wheatley P. S., Chlubná⁃Eliášová P., Greer H., Zhou W., Seymour V. R., Dawson D. M., Ashbrook S. E., Pinar A. B., McCusker L. B., Opanasenko M., Čejka J., Morris R. E., Angew. Chem. Int. Ed., 2014, 53(48), 13210—13214 |
49 | Mazur M., Wheatley P. S., Navarro M., Roth W. J., Položij M., Mayoral A., Eliášová P., Nachtigall P., Čejka J., Morris R. E., Nature Chem., 2016, 8, 58—62 |
50 | Kasneryk V., Shamzhy M., Opanasenko M., Wheatley P. S., Morris S. A., Russell S. E., Mayoral A., Trachta M., Čejka J., Morris R. E., Angew. Chem. Int. Ed., 2017, 56(15), 4324—4327 |
51 | Firth D. S., Morris S. A., Wheatley P. S., Russell S. E., Slawin A. M. Z., Dawson D. M., Mayoral A., Opanasenko M., Položij M., Čejka J., Nachtigall P., Morris R. E., Chem. Mater., 2017, 29(13), 5605—5611 |
52 | Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E., Chlubná P., Grajciar L., Položij M., Zukal A., Shvets O., Čejka J., Nature Chem., 2013, 5, 628—633 |
53 | Liu X., Mao W., Jiang J., Lu X., Peng M., Xu H., Han L., Che S. A., Wu P., Chem. Eur. J., 2019, 25(17), 1—11 |
54 | Liu X., Luo Y., Mao W., Jiang J., Xu H., Han L., Sun J., Wu P., Angew. Chem., 2020, 132(3), 1182—1186 |
55 | Navarro M., Morris S. A., Mayoral Á., Čejka J., Morris R. E., J. Mater. Chem. A, 2017, 5(17), 8037—8043 |
56 | Mazur M., Arévalo⁃López A. M., Wheatley P. S., Bignami G. P. M., Ashbrook S. E., Morales⁃García Á., Nachtigall P., Attfield J. P., Čejka J., Morris R. E., J. Mater. Chem. A, 2018, 6(13), 5255—5259 |
57 | Kasneryk V., Shamzhy M., Zhou J., Yue Q., Mazur M., Mayoral A., Luo Z., Morris R. E., Čejka J., Opanasenko M., Nature Commun., 2019, 10(1), 5129 |
58 | Jordá J. L., Rey F., Sastre G., Valencia S., Palomino M., Corma A., Segura A., Errandonea D., Lacomba R., Manjón F. J., Gomis Ó., Kleppe A. K., Jephcoat A. P., Amboage M., Rodríguez‐Velamazán J. A., Angew. Chem. Int. Ed., 2013, 52(40), 10458—10462 |
59 | Liu X., Zhang L., Xu H., Jiang J., Peng M., Wu P., Appl. Catal. A: Gen., 2018, 550, 11—19 |
60 | Henkelis S. E., Mazur M., Rice C. M., Bignami G. P. M., Wheatley P. S., Ashbrook S. E., Čejka J., Morris R. E., Nature, 2019, 14, 781—794 |
61 | Henkelis S. E., Mazur M., Rice C. M., Wheatley P. S., Ashbrook S. E., Morris R. E., J. Am. Chem. Soc., 2019, 141(19), 4453—4459 |
62 | Ma Y., Xu H., Liu X., Peng M., Mao W., Han L., Jiang J., Wu P., Chem. Commun., 2019, 55(13), 1883—1886 |
63 | Trachta M., Nachtigall P., Bludský O., Catal. Today, 2015, 243, 32—38 |
64 | Trachta M., Bludský O., Čejka J., Morris R. E., Nachtigall P., ChemPhysChem, 2014, 15(14), 2972—2976 |
65 | Schoemaker D. P., Robson H. E., Broussard L., Third International Conf. Molecular Sieves, Proc., 1973, 138—143 |
66 | Gramlich⁃Meier R., Meier W. M., Smith B. K., Z. Krist⁃Cryst. Mater., 1984, 169(1―4), 201—210 |
67 | Verheyen E., Joos L., Havenbergh K. V., Breynaert E., Kasian N., Gobechiya E., Houthoofd K., Martineau C., Hinterstein M., Taulelle F., Speybroeck V. V., Waroquier M., Bals S., Tendeloo G. V., Kirschhock C. E. A., Martens J. A., Nature Mater., 2012, 11(12), 1059—1064 |
68 | Speybroeck V. V., Hemelsoet K., Joos L., Waroquier M., Bellb R. G., Catlow C. R. A., Chem. Soc. Rev., 2015, 44(20), 7044—7111 |
69 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater., 2019, 31(23), 9777—9787 |
70 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater., 2020, 32(5), 2014—2024 |
71 | Hong X., Chen W., Zhang G., Wu Q., Lei C., Zhu Q., Meng X., Han S., Zheng A., Ma Y., Parvulescu A. N., Müller U., Zhang W., Yokoi T., Bao X., Marler B., De Vos D. E., Kolb U., Xiao F. S., J. Am. Chem. Soc., 2019, 141(45), 18318—18324 |
72 | Lei C., Dong Z., Martínez C., Martínez‐Triguero J., Chen W., Wu Q., Meng X., Parvulescu A. N., de Baerdemaeker T., Müller U., Zheng A., Ma Y., Zhang W., Yokoi T., Marler B., de Vos D. E., Kolb U., Corma A., Xiao F. S., Angew. Chem., 2020, 132(36), 15779—15785 |
73 | Přech J., Čejka J., Catal. Today, 2016, 277, 2—8 |
74 | Liu X., Xu H., Zhang L., Han L., Jiang J., Oleynikov P., Chen L., Wu P., ACS Catal., 2016, 6(12), 8420—8431 |
75 | Verheyen E., Sree S. P., Thomas K., Dendooven J., Prins M. D., Vanbutsele G., Breynaert E., Gilson J. P., Kirschhock C. E. A., Detavernier C., Martens J. A., Chem. Commun., 2014, 50(35), 4610—4612 |
76 | Zhu J., Zhu Y., Zhu L., Rigutto M., van der Made A., Yang C., Pan S., Wang L., Zhu L., Jin Y., Sun Q., Wu Q., Meng X., Zhang D., Han Y., Li J., Chu Y., Zheng A., Qiu S., Zheng X., Xiao F. S., J. Am. Chem. Soc., 2014, 136(6), 2503—2510 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[6] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[7] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[8] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[9] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[10] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[11] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[12] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[13] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[14] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[15] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||