Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (2): 247.doi: 10.7503/cjcu20170665
• Physical Chemistry • Previous Articles Next Articles
BAI Yan, XIA Wensheng*(), WENG Weizheng, LIAN Mengshui, ZHAO Mingquan, WAN Huilin*(
)
Received:
2017-09-30
Online:
2018-02-10
Published:
2017-12-23
Contact:
XIA Wensheng,WAN Huilin
E-mail:wsxia@xmu.edu.cn;hlwan@xmu.edu.cn
Supported by:
TrendMD:
BAI Yan, XIA Wensheng, WENG Weizheng, LIAN Mengshui, ZHAO Mingquan, WAN Huilin. Influence of Phosphate on La-based Catalysts for Oxidative Coupling of Methane†[J]. Chem. J. Chinese Universities, 2018, 39(2): 247.
Catalyst | T/℃ | SC2(%) | YC2(%) | |||
---|---|---|---|---|---|---|
Blank | 700 | 0 | 0 | 0 | 0 | 0 |
750 | 1.2 | 2.5 | 59.0 | 41.0 | 0.5 | |
La2O3 | 550 | 29.6 | 94.3 | 55.9 | 44.1 | 13.1 |
650 | 30.3 | 98.8 | 53.5 | 46.5 | 14.1 | |
700 | 29.8 | 100.0 | 57.0 | 43.0 | 12.8 | |
750 | 28.7 | 100.0 | 59.5 | 40.5 | 11.6 | |
0.07P-La | 550 | 29.5 | 94.1 | 53.2 | 46.8 | 13.8 |
650 | 30.1 | 97.3 | 50.8 | 49.2 | 14.8 | |
700 | 31.7 | 98.8 | 50.8 | 49.2 | 15.6 | |
750 | 29.4 | 99.6 | 49.8 | 50.2 | 14.8 | |
0.13P-La | 550 | 31.0 | 97.6 | 48.0 | 52.0 | 16.1 |
650 | 31.4 | 98.5 | 47.2 | 52.8 | 16.6 | |
700 | 31.4 | 98.9 | 48.2 | 51.8 | 16.3 | |
750 | 31.2 | 99.6 | 48.7 | 51.3 | 16.0 | |
0.27P-La | 550 | 29.3 | 96.6 | 51.7 | 48.3 | 14.2 |
650 | 30.8 | 98.3 | 48.8 | 51.2 | 15.8 | |
700 | 31.0 | 98.7 | 48.5 | 51.5 | 16.0 | |
750 | 30.9 | 99.3 | 50.0 | 50.0 | 15.4 | |
0.40P-La | 550 | 29.0 | 99.1 | 59.9 | 40.1 | 11.6 |
650 | 30.0 | 99.6 | 55.8 | 44.2 | 13.3 | |
700 | 30.8 | 99.7 | 55.4 | 44.6 | 13.7 | |
750 | 30.4 | 100.0 | 54.8 | 45.2 | 13.7 | |
1.30P-La | 650 | 1.2 | 2.2 | 100.0 | 0 | 0 |
700 | 2.3 | 4.7 | 59.8 | 40.2 | 0.9 | |
750 | 4.0 | 8.0 | 52.7 | 47.3 | 2.0 |
Table 1 Performances of La-based catalysts in OCM under selected temperatures*
Catalyst | T/℃ | SC2(%) | YC2(%) | |||
---|---|---|---|---|---|---|
Blank | 700 | 0 | 0 | 0 | 0 | 0 |
750 | 1.2 | 2.5 | 59.0 | 41.0 | 0.5 | |
La2O3 | 550 | 29.6 | 94.3 | 55.9 | 44.1 | 13.1 |
650 | 30.3 | 98.8 | 53.5 | 46.5 | 14.1 | |
700 | 29.8 | 100.0 | 57.0 | 43.0 | 12.8 | |
750 | 28.7 | 100.0 | 59.5 | 40.5 | 11.6 | |
0.07P-La | 550 | 29.5 | 94.1 | 53.2 | 46.8 | 13.8 |
650 | 30.1 | 97.3 | 50.8 | 49.2 | 14.8 | |
700 | 31.7 | 98.8 | 50.8 | 49.2 | 15.6 | |
750 | 29.4 | 99.6 | 49.8 | 50.2 | 14.8 | |
0.13P-La | 550 | 31.0 | 97.6 | 48.0 | 52.0 | 16.1 |
650 | 31.4 | 98.5 | 47.2 | 52.8 | 16.6 | |
700 | 31.4 | 98.9 | 48.2 | 51.8 | 16.3 | |
750 | 31.2 | 99.6 | 48.7 | 51.3 | 16.0 | |
0.27P-La | 550 | 29.3 | 96.6 | 51.7 | 48.3 | 14.2 |
650 | 30.8 | 98.3 | 48.8 | 51.2 | 15.8 | |
700 | 31.0 | 98.7 | 48.5 | 51.5 | 16.0 | |
750 | 30.9 | 99.3 | 50.0 | 50.0 | 15.4 | |
0.40P-La | 550 | 29.0 | 99.1 | 59.9 | 40.1 | 11.6 |
650 | 30.0 | 99.6 | 55.8 | 44.2 | 13.3 | |
700 | 30.8 | 99.7 | 55.4 | 44.6 | 13.7 | |
750 | 30.4 | 100.0 | 54.8 | 45.2 | 13.7 | |
1.30P-La | 650 | 1.2 | 2.2 | 100.0 | 0 | 0 |
700 | 2.3 | 4.7 | 59.8 | 40.2 | 0.9 | |
750 | 4.0 | 8.0 | 52.7 | 47.3 | 2.0 |
Catalyst | Surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm | DXRD/nm | |
---|---|---|---|---|---|
La2 | La3P | ||||
La2O3 | 3.7 | 0.03 | 21.3 | 50.7 | |
0.07P-La | 3.9 | 0.02 | 14.8 | 30.1 | |
0.13P-La | 4.1 | 0.02 | 13.9 | 29.2 | 27.9 |
0.27P-La | 9.6 | 0.08 | 25.2 | 26.3 | 25.8 |
0.40P-La | 12.3 | 0.09 | 31.3 | 19.1 | |
1.30P-La | 19.2 | 0.16 | 29.5 | |
Table 2 Specific surface areas, pore volumes and pore sizes of samples
Catalyst | Surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm | DXRD/nm | |
---|---|---|---|---|---|
La2 | La3P | ||||
La2O3 | 3.7 | 0.03 | 21.3 | 50.7 | |
0.07P-La | 3.9 | 0.02 | 14.8 | 30.1 | |
0.13P-La | 4.1 | 0.02 | 13.9 | 29.2 | 27.9 |
0.27P-La | 9.6 | 0.08 | 25.2 | 26.3 | 25.8 |
0.40P-La | 12.3 | 0.09 | 31.3 | 19.1 | |
1.30P-La | 19.2 | 0.16 | 29.5 | |
Catalyst | Eb/eV, FWHM/eV, relative amount of oxygen species(%) | ( | |||
---|---|---|---|---|---|
O2- | O- | C | |||
La2O3 | 528.7, 1.4, 12.4 | 530.2, 1.4, 12.8 | 531.1, 1.4, 48.8 | 532.1, 1.4, 26.0 | 5.0 |
0.13P-La | 528.8, 1.4, 9.5 | 530.2, 1.4, 6.7 | 531.1, 1.4, 61.5 | 532.4, 1.4, 22.3 | 7.2 |
Table 3 Curve-fitting results from XPS spectra for O1s of the catalysts*
Catalyst | Eb/eV, FWHM/eV, relative amount of oxygen species(%) | ( | |||
---|---|---|---|---|---|
O2- | O- | C | |||
La2O3 | 528.7, 1.4, 12.4 | 530.2, 1.4, 12.8 | 531.1, 1.4, 48.8 | 532.1, 1.4, 26.0 | 5.0 |
0.13P-La | 528.8, 1.4, 9.5 | 530.2, 1.4, 6.7 | 531.1, 1.4, 61.5 | 532.4, 1.4, 22.3 | 7.2 |
Fig.9 Durability of 0.13P-La and La2O3 catalysts in OCM^Reaction conditions: n(CH4)/n(O2)=3, GHSV=30000 mL·g-1·h-1, mcat=100 mg, T=650 ℃. ◇◆ SC2; ☆★ XCH4; □? YC2.
[1] | Tang P., Zhu Q. J., Wu Z. X., Ma D., Energy Environ. Sci., 2014, 7(8), 2580—2591 |
[2] | Guo Z., Liu B., Zhang Q. H., Deng W. P., Wang Y., Yang Y. H., Chem. Soc. Rev., 2014, 43(10), 3480. |
[3] | Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y. H., Zhu Y., Nanoscale,2015, 7(6), 2260—2264 |
[4] | Li Z.N., Hei L., Wang S. L., Yi W. Z., Zou S. H., Xiao L. P., Fan J., ACS Comb. Sci., 2017, 19(1), 15—24 |
[5] | Sollier B. M., Gómez L. E., Boix A. V., Miró E. E., Appl. Cataly. A: Gen., 2017, 532, 65—76 |
[6] | Wang Z. L., Chen L., Luo X., Zou G. J., Gao R. X., Chou L. J., Wang X. L., J. Mol. Catal., 2013, 27(2), 152—158 |
[7] | Elkins T. W., Roberts S. J., Hagelin-Weaver H. E., Appl. Catal. A: Gen., 2016, 528, 175—190 |
[8] | Hou Y. H., Lin Y. L., Li Q., Weng W. Z., Xia W. S., Wan H. L., ChemCatChem,2013, 5(12), 3725—3735 |
[9] | Lin X. Z., Li G. C., Huang C. J., Weng W. Z., Wan H. L., Chinese Chem. Lett., 2013, 24(9), 789—792 |
(林晓张, 李广超, 黄传敬, 翁维正, 万惠霖. 中国化学快报, 2013,24(9), 789—792) | |
[10] | Trotuş I. T., Teodorescu C. M., Pârvulescu V. I., Marcu I. C., ChemCatChem,2013, 5(3), 757—765 |
[11] | Hou Y. H., Han W. C., Xia W. S., Wan H. L., ACS Catal., 2015, 5(3), 1663—1674 |
[12] | Yang Y. L., Dong L. Y., Xia W. S., Wan H. L., Chem. J. Chinese Universities, 2016, 37(12), 2206—2214 |
(杨艳玲, 董玲玉, 夏文生, 万惠霖. 高等学校化学学报, 2016,37(12), 2206—2214) | |
[13] | Bernal S., Botana F. J., Garcia R., Rodiguez-Izquierdo J. M., Reactivity of Soliak, 1987, 4, 23—40 |
[14] | Farrukh M. A., Imran F., Ali S., Khaleeq-Ur-Rahman M., Naqvi I. I., Russ. J. Appl. Chem., 2015, 88(9), 1523—1527 |
[15] | Djerdj I., Garnweitner G., Su D. S., Niederberger M., J. Solid State Chem., 2007, 180(7), 2154—2165 |
[16] | Méndez M., Carvajal J. J., Cesteros Y., Aguiló M., Díaz F., Giguère A., Drouin D., Martínez-Ferrero E., Salagre P., Formentín P., Optical Materials, 2010, 32(12), 1686—1692 |
[17] | Loitongbam R. S., Singh N. S., Singh W. R., S., Ningthoujam R., J. Lumin., 2013, 134, 14—23 |
[18] | Lien D. T., Huong D. T. M., Le V. V., Long N. N., J. Lumin., 2015, 161, 389—394 |
[19] | Macalik L., Tomaszewski P. E., Matraszek A., Szczygieł I., Solarz P., Godlewska P., Sobczyk M., Hanuza J., J. Alloys Compd., 2011, 509(27), 7458—7465 |
[20] | Guo X. H., Mao C. C., Zhang J., Huang J., Wang W. N., Deng Y. H., Wang Y. Y., Cao Y., Huang W. X., Yu S. H., Small,2012, 8(10), 1515—1520 |
[21] | Lü S., Zhang J., J. Nanosci. Nanotechnol., 2008, 8(3), 1410—1413 |
[22] | Zhang H. B., Lin G. D., Wan H. L., Liu Y. D., Weng W. Z., Cai J. X., Shen Y. F., Tsai K. R., Catal. Lett., 2001, 73(2), 141—147 |
[23] | Peil K. P., Jr J. G. G., Marcelin G., J. Catal., 1991, 131(1), 143—155 |
[24] | Wang J. X., Lunsford J. H., Research Gate, 1986, 90(17), 3890—3891 |
[25] | Ferreira V. J., Tavares P., Figueiredo J. L., Faria J. L., Catal. Commun., 2013, 42(23), 50—53 |
[26] | Peng X. D., Richards D. A., Stair P. C., J. Catal., 1990, 121(1), 99—109 |
[27] | Huang P., Zhao Y., Zhang J., Zhu Y., Sun Y. H., Nanoscale,2013, 5(22), 10844—10848 |
[28] | Rodriguez J. A., Hrbek J., Kuhn M., Sham T. K., J. Phys. Chem., 1993, 97(18), 4737—4744 |
[29] | Zhang X., He D., Zhang Q., Xu B., Zhu Q., Top. Catal., 2005, 32(3), 215—223 |
[1] | WENG Meiqi, SHANG Guiming, WANG Jiatai, LI Shenghua, FAN Zhi, LIN Song, GUO Minjie. Template Simulation of Organophosphorus Nerve Agent Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220136. |
[2] | ZHOU Ning, TANG Xiaohua, CAO Hong, ZHA Fei, LI Chun, XIE Chunyan, XU Mingping, SUN Yige. Preparation, Characterization and Degradation to BPA of Pomegranate-like Gel Microsphere Entrapmented Laccase [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210705. |
[3] | ZHU Haotian, JIN Meixiu, TANG Wensi, SU Fang, LI Yangguang. Properties of Transition Metal-biimidazole-Dawson-type Tungstophosphate Hybrid Compounds as Supports for Enzyme Immobilization [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220328. |
[4] | LEI Xiaotong, JIN Yiqing, MENG Xuanyu. Prediction of the Binding Site of PIP2 in the TREK-1 Channel Based on Molecular Modeling [J]. Chem. J. Chinese Universities, 2021, 42(8): 2550. |
[5] | LI Dongping, LI Bin, LI Changheng, YU Xuegang, SHAN Yan, CHEN Kezheng. Synthesis and Enhanced Photocatalytic Activity of Ni5P4/g-C3N4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1292. |
[6] | YANG Ju, SU Lijiao, LI Canhua, LU Jiajia, YANG Junli, GU Jie, YANG Li, YANG Lijuan. Host-guest Complexation Behavior of Nardosinone and Water-soluble Phosphate Salt Pillar[6]arene [J]. Chem. J. Chinese Universities, 2021, 42(10): 3099. |
[7] | WANG Baichun, YUAN Yuxin, YAN Yinghua, DING Chuanfan, TANG Keqi. Glucose-6-phosphate Functionalized Hydrophilic Magnetic Probe: a Dual-purpose Affinity Material for Effective Separation and Enrichment of Glycopeptides/Phosphopeptides [J]. Chem. J. Chinese Universities, 2021, 42(10): 3062. |
[8] | WANG Qishun, ZHANG Zeshu, WANG Huan, LIU Yu, SONG Shuyan, ZHANG Hongjie. Synthesis and Enzymatic Activity of Ni, Ru Co-doped CePO4 Nanomaterials [J]. Chem. J. Chinese Universities, 2020, 41(5): 947. |
[9] | LIU Yina, YANG Rongjie, HU Weiguo, LI Dinghua. Analysis of Characteristic Phosphorus in High Polymerization Ammonium Polyphosphate by 31P NMR [J]. Chem. J. Chinese Universities, 2020, 41(12): 2832. |
[10] | ZHOU Sihui, LI Qiong, ZHANG Ting, PANG Daiwen, TANG Hongwu. Luminescent Nanoswitch Based on Carbon Dots for Sensitive Detection of Cu(Ⅱ) Ions and Pyrophosphates [J]. Chem. J. Chinese Universities, 2019, 40(8): 1593. |
[11] | ZOU Xiaochuan,WANG Yue,WANG Cun,HU Shiwen,SHI Kaiyun. Synthesis of Amine Functionalized ZPS-PVPA Supported Chiral MnⅢ(salen) and Asymmetric Catalytic Olefin Epoxidation† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1488. |
[12] | CHENG Wenmin,XIA Wensheng,WAN Huilin. Influence of Surface Reactivity of Lanthanum Oxide on the Activation of Methane and Oxygen† [J]. Chem. J. Chinese Universities, 2019, 40(5): 940. |
[13] | WANG Na,YANG Fei,ZHANG Jing,FANG Qinghong. Inflame-retardant Water-borne Epoxy Resin of APP Microsphere with Carrageenan Cladding† [J]. Chem. J. Chinese Universities, 2019, 40(2): 385. |
[14] | SHAO Guoquan,ZHU Hui,MA Wei,YAN Pan,MA Jilong. Synthesis of High-performance AlPO4-14 Zeolite Membranes for Gas Separation † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2265. |
[15] | LIU Yina,YANG Rongjie,LI Dinghua,LIANG Jiaxiang,HU Weiguo. Characterization of High Polymerization Degree Ammonium Polyphosphate and Its Chain Structure by 31P NMR† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||