Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (12): 2320.doi: 10.7503/cjcu20170093
• Physical Chemistry • Previous Articles Next Articles
ZHANG Yuanyuan, LI Fenpei, LIU Xiangqing, CHEN Haiyan, LUO Ying, JING Lihong, LU Jiaxing1,*(), ZHANG Guirong2,*(
)
Received:
2017-02-18
Online:
2017-12-10
Published:
2017-11-23
Contact:
LU Jiaxing,ZHANG Guirong
E-mail:jxlu@chem.ecnu.edu.cn;grzhang@chem.ecnu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Yuanyuan, LI Fenpei, LIU Xiangqing, CHEN Haiyan, LUO Ying, JING Lihong, LU Jiaxing, ZHANG Guirong. Methanol Electrocatalytic Oxidation on Pt/Poly(o-toluidine) Film/Activated Carbon Doped Graphite Carbon Paste Electrode†[J]. Chem. J. Chinese Universities, 2017, 38(12): 2320.
Fig.2 jF peak current density as a function of w for Pt/MWCNT-CPE(A), Pt/GRA-CPE(B), Pt/YEC-CPE(C) and Pt/YBC-CPE(D), respectively, in 0.5 mol/L H2SO4+1 mol/L CH3OH and -0.10—0.85 V at 100 mV/s
Fig.3 Current vs. time transient plot obtained during the potentiostatic experiment(at -0.10 V) of CPE, POT(6.5 mC)/CPE, YBC-CPE(14%) and POT(6.5 mC)/YBC-CPE(14%) in a 0.5 mol/L H2SO4+3 mmol/L H2PtCl6 solution
Fig.4 Plots of the experimental data and the theoretical models for 3D nucleation of the platinum deposition on CPE(A), POT(6.5 mC)/CPE(B), YBC-CPE(14%)(C) and POT(6.5 mC)/YBC-CPE(14%)(D)
Fig.6 CVs of Pt/CPE, Pt/POT(6.5 mC)/CPE, Pt/ YBC-CPE(14%) and Pt/POT(6.5 mC)/YBC-CPE(14%) in 0.5 mol/L H2SO4+1.0 mol/L CH3OH and -0.10—0.85 V at 100 mV/s(A)and in 0.5 mol/L H2SO4 and -0.25—0.85 V at 50 mV/s(B)
Fig.7 jF peak current density and EASA as a function of POT film charge(QPOT) for Pt/POT/CPE(A) and Pt/POT/YBC-CPE(14%)(B) in 0.5 mol/L H2SO4 + 1 mol/L CH3OH solution and -0.10—0.85 V at 100 mV/s
Electrode | QPOT/mC | jF/(A·g-1) | EF/V | Eonset/V | |
---|---|---|---|---|---|
Pt/POT/CPE | 0 | 121.26 | 0.730 | 1.03 | 0.225 |
4.5 | 140.36 | 0.744 | 1.04 | 0.290 | |
6.5 | 176.46 | 0.742 | 1.08 | 0.337 | |
10.5 | 144.37 | 0.733 | 1.12 | 0.469 | |
15.5 | 129.63 | 0.734 | 1.12 | 0.492 | |
Pt/POT/YBCPE(14%) | 0 | 161.00 | 0.722 | 0.99 | 0.242 |
4.5 | 163.84 | 0.717 | 1.04 | 0.238 | |
6.5 | 200.17 | 0.714 | 1.07 | 0.264 | |
10.5 | 159.83 | 0.718 | 1.10 | 0.413 | |
15.5 | 135.53 | 0.728 | 1.13 | 0.465 |
Table 1 Parameters related to the electrooxidation of 1 mol/L CH3OH at Pt/POT/CPE and Pt/POT/YBCPE(14%)
Electrode | QPOT/mC | jF/(A·g-1) | EF/V | Eonset/V | |
---|---|---|---|---|---|
Pt/POT/CPE | 0 | 121.26 | 0.730 | 1.03 | 0.225 |
4.5 | 140.36 | 0.744 | 1.04 | 0.290 | |
6.5 | 176.46 | 0.742 | 1.08 | 0.337 | |
10.5 | 144.37 | 0.733 | 1.12 | 0.469 | |
15.5 | 129.63 | 0.734 | 1.12 | 0.492 | |
Pt/POT/YBCPE(14%) | 0 | 161.00 | 0.722 | 0.99 | 0.242 |
4.5 | 163.84 | 0.717 | 1.04 | 0.238 | |
6.5 | 200.17 | 0.714 | 1.07 | 0.264 | |
10.5 | 159.83 | 0.718 | 1.10 | 0.413 | |
15.5 | 135.53 | 0.728 | 1.13 | 0.465 |
[1] | Zainoodin A. M., Kamarudin S. K., Daud W. R. W., Int. J. Hydrogen Energy, 2010, 35, 4606—4621 |
[2] | Jackson C., Conrad O., Levecque P., Electrocatalysis,2017, 8, 224—234 |
[3] | Xiang Z., Zhao X., Ge J., Ma S., Zhang Y., Na H., Chem. Res. Chinese Universities, 2016, 32(2), 291—295 |
[4] | Hsieh C. T., Lin J. Y., Yang S. Y., Physica E, 2009, 41, 373—378 |
[5] | Yousaf A. B., Mukhtar B., Al-Ahmed A., Zaidia S. J., J. Electrochem. Soc., 2017, 164(6), F667—F673 |
[6] | Liu J., Lu C., Jin C., Guo Y. Wang G., Chem. Res. Chinese Universities, 2016, 32(2), 234—241 |
[7] | Zhang G., Ding B., Wu L., He L., Ni B., Lu J., J. Appl. Polymer Sci., 2013, 129(3), 1593—1606 |
[8] | Yoo E., Okada T., Kizuka T., Nakamura J., J. Power Sources, 2008, 180, 221—226 |
[9] | Paoletti C., Cemmi A., Giorgi L., Giorgi R., Pilloni L., Serra E., Pasquali M., J. Power Sources, 2008, 183, 84—91 |
[10] | Wang H. W., Du J., Yao Z. Q., Yue R. R., Zhai C. Y., Jiang F. X., Du Y. K., Wang C. Y., Yang P., Colloids and Surfaces A: Physicochem. Eng. Aspects,2013, 436, 57—61 |
[11] | Park S. J., Park J. M., Seo M. K., J. Colloid Interface Sci., 2009, 337, 300—303 |
[12] | Rhee C. K., Kim B. J., Ham C., Kim Y. J., Song K., Kwon K., Langmuir,2009, 25, 7140—7147 |
[13] | Pozio A., De Francesco M., Cemmi A., Cardellini F., Giorgi L., J. Power Sources, 2002, 105, 13—19 |
[14] | Moghaddam R. B., Pickup P. G., Electrochem. Commun., 2011, 13, 704—706 |
[15] | Svancara I., Vytras K., Kalcher K., Walcarius A., Wang J., Electroanalysis,2009, 21, 7—28 |
[16] | Svancara I., Walcarius A., Kalcher K., Vytras K., Cent. Eur. J. Chem., 2009, 7, 598—656 |
[17] | Zhang Y., Li F., Liu X., Lu J., Zhang G., Electrochim. Acta, 2017, 242, 165—172 |
[18] | Zhou W. Q., Du Y. K., Zhang H. M., Xu J. K., Yang P., Electrochim. Acta, 2010, 55, 2911—2917 |
[19] | Kuo C. W., Huang L. M., Wen T. C., Gopalan A., J. Power Sources, 2006, 160, 65—72 |
[20] | Gao H., He J. B., Wang Y., Deng N., J. Power Sources, 2012, 205, 164—172 |
[21] | Liu Z., Lee J. Y., Chen W., Han M., Gan L. M., Langmuir,2004, 20, 181—187 |
[22] | Raoof J. B., Ojani R., Hosseini S. R., Int. J. Hydrogen Energy, 2011, 36, 52—63 |
[23] | Lee H. Y., Vogel W., Chu P. P. J., Langmuir,2011, 27, 14654—14661 |
[24] | Montilla F., Morallón E., Duo I., Comninellis Ch., Vázquez J. L., Electrochim. Acta, 2003, 48, 3891—3897 |
[25] | Scharifker B., Hills G., Electrochim. Acta, 1983, 28, 879—889 |
[26] | Bade K., Tsakova V., Schultze J. W., Electrochim. Acta, 1992, 37, 2255—2261 |
[27] | Domínguez-Domínguez S., Arias-Pardilla J., Berenguer-Murcia A., Morallón E., Cazorla-Amorós D., J. Appl. Electrochem., 2008, 38, 259—268 |
[28] | Plyasova L. M., Molina I. Y., Gavrilov A. N., Cherepanova S. V., Cherstiouk O. V., Rudina N. A., Savinova E. R., Tsirlina G. A., Electrochimi. Acta, 2006, 51, 4477—4488 |
[29] | Simonova A. N., Cherstiouk O. V., Vassiliev S. Y., Zaikovskii V. I., Filatov A. Y., Rudina N. A., Savinova E. R., Tsirlina G. A., Electrochimi. Acta, 2014, 150, 279—289 |
[30] | Hosseini S. R., Raoof J., Ghasemi S., Gholami Z., Int. J. Hydrogen Energy, 2015, 40, 292—302 |
[31] | Zhang H. M., Zhou W. Q., Du Y. K., Yang P., Wang C. Y., Electrochem. Commun., 2010, 12, 882—885 |
[32] | Schmidt T. J., Fasteiger H. A., Stab G. D., Urban P. M., Kolb D. M., Behm R. J., J. Electrochem. Soc., 1998, 145, 2354—2358 |
[33] | Al-Youbi A. O., Gomez de la Fuente J. L., Perez-Alonso F. J., Obaid Abdullah Y., Fierro J. L. G., Pena M. A., Abdel Salam M., Rojas S., Appl. Catal., B: Environmental, 2014, 150—151, 21—29 |
[34] | Hernandez-Fernandez P., Montiel M., Ocon P., Gomez de la Fuente J. L., Garcia-Rodriguez S., Rojas S., Fierro J. L. G., Appl. Catal., B: Environmental, 2010, 99, 343—352 |
[1] | LI Xiangnan,YU Mingming,FAN Yong,WANG Qiuxian,ZHANG Huishuang,YANG Shuting. Study on Electrochemical Performances of N-doped P/C Composite as Anode Material of Lithium Ion Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2360. |
[2] | LIU Yanhua, JIN Lu, XUE Beichen, GUO Yupeng. Preparation and Electrochemical Properties of Rice Husk Based Activated Carbon Modified by Pitch† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1242. |
[3] | GAO Jun, HU Hui, LIU Xueyan. Preparation and Evaluation of Modified Cyanobacteria-derived Activated Carbon for CO2 Adsorption† [J]. Chem. J. Chinese Universities, 2018, 39(2): 284. |
[4] | WANG Danfeng, YANG Haiyan, NING Yuesheng, ZHAO Binyuan. Morphosynthesis of Porous Silver Cubes on the Surface of Hydrogen-pretreated Monolithic Activated Carbon [J]. Chem. J. Chinese Universities, 2017, 38(9): 1503. |
[5] | LIU Zile, ZENG Zequan, YANG Jieyang, CUI Yan, WU Ailian, LI Zhe, HUANG Zhanggen. Degradation of Phenol with Persulfate Activated by Surface Modified Activated Carbon† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1241. |
[6] | SUN Yiyan, LU Shanfu, WANG Haining, XIANG Yan. Electrochemical Detection of Penicillin Based on Titanium Nitride Nanoparticles Carbon Paste Electrode† [J]. Chem. J. Chinese Universities, 2017, 38(4): 541. |
[7] | GAO Ye, WANG Wei, PANG Liyun, CAO Liyuan, GUO Yupeng, ZHAO Chun. One-step Synthesis of Activated Carbon from Molasses and Its Interfacial Adsorption Behavior† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2156. |
[8] | ZHANG Rongbin, TONG Sai, YANG Jinmei, TANG Xiannong, HUANG Chuanqing, WANG Xuewen, FENG Gang, CAI Jianxin. Graphene Supported Nickel Catalyst for Methanation of Carbon Dioxide† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2255. |
[9] | XU Liang, LIN Youqin, CHEN Xu, LU Yanluo, YANG Wensheng. Electrodeposition of Platinum Nanoparticles on MgAl-layered Double Hydroxide Modified Indium Tin Oxide Electrode for Electrochemical Glucose Biosensor† [J]. Chem. J. Chinese Universities, 2016, 37(3): 442. |
[10] | LU Miao, LIU Jianyun, WANG Shiping, CHENG Jian. Preparation of Sulfonated Graphene/Activated Carbon Composite Electrode for Asymmetric Capacitive Deionization† [J]. Chem. J. Chinese Universities, 2014, 35(7): 1546. |
[11] | GAO Jichao, QI Li, WANG Hongyu. EQCM Studies on the Effect of Anti-freezing Additives on the Storage Behavior of Ions at Activated Carbon Electrodes in NaClO4 Aqueous Solutions† [J]. Chem. J. Chinese Universities, 2014, 35(3): 608. |
[12] | GAO Ji-Chao, YIN Jiao, QI Li, WANG Hong-Yu. Electrochemical Quartz Crystal Microbalance Studies on the Storage Behavior of Ions at Activated Carbon Electrodes in NaClO4 Aqueous Solutions [J]. Chem. J. Chinese Universities, 2013, 34(7): 1743. |
[13] | WEN Bin, WEI Shuang, SHI Zhan, LIN Hai-Bo, LU Hai-Yan. Capacitance Performance and Model Analysis of Activated Carbon Derived from Rice Husks [J]. Chem. J. Chinese Universities, 2013, 34(3): 674. |
[14] | LI Na, ZHU Jian, ZHA Qing-Fang. Quantitative and Qualitative Analyses of Oxygen-containing Surface Functional Groups on Activated Carbon [J]. Chem. J. Chinese Universities, 2012, 33(03): 548. |
[15] | NIU Yao-Lan, MA Cheng-Yu*, LI Deng-Xin, LI Xue-Wen. Preparation and Characterization of Activated Carbon from Potassium Hydroxide Activated Linen Fabric Waste [J]. Chem. J. Chinese Universities, 2010, 31(10): 1929. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||