Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (5): 830.doi: 10.7503/cjcu20160772
• Physical Chemistry • Previous Articles Next Articles
ZHANG Yong1,2, FU Mao2, WU Deli1, ZHANG Yalei1,*()
Received:
2016-11-07
Online:
2017-05-10
Published:
2017-04-12
Contact:
ZHANG Yalei
E-mail:zhangyalei@tongji.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Yong, FU Mao, WU Deli, ZHANG Yalei. Removal Performance and Mechanism of Selenite with the Highly Active Ferrous Hydroxyl Complex FHC(Cl-)†[J]. Chem. J. Chinese Universities, 2017, 38(5): 830.
Fig.2 Residual total vs. time of Se(Ⅳ)removal by FHC(Cl-)Inset: fitting results using with first order kinetic model. Initial [Se(Ⅳ)]=20 mg/L, FHC(Cl-) dosage =112 mg/L, pH=7.5.
Level | Dosage/(mg·L-1) | O2 | pH | c(NaCl)/(mmol·L-1) |
---|---|---|---|---|
1 | 56.0 | Aerobic | 5.5 | 0 |
2 | 98.0 | Closed | 7.5 | 1 |
3 | 140.0 | Anaerobic | 9.5 | 2 |
Table 1 Factor levels based on response surface method(RSM)
Level | Dosage/(mg·L-1) | O2 | pH | c(NaCl)/(mmol·L-1) |
---|---|---|---|---|
1 | 56.0 | Aerobic | 5.5 | 0 |
2 | 98.0 | Closed | 7.5 | 1 |
3 | 140.0 | Anaerobic | 9.5 | 2 |
pH | c(NaCl)/ (mmol·L-1) | Dosage/ (mg·L-1) | O2 | c/c0 | pH | c(NaCl)/ (mmol·L-1) | Dosage/ (mg·L-1) | O2 | c/c0 |
---|---|---|---|---|---|---|---|---|---|
7.5 | 2 | 98.0 | Aerobic | 0.08 | 7.5 | 0 | 98.0 | Aerobic | 0.11 |
7.5 | 1 | 98.0 | Closed | 0.14 | 5.5 | 1 | 98.0 | Aerobic | 0.66 |
5.5 | 1 | 140.0 | Closed | 0.52 | 9.5 | 0 | 98.0 | Closed | 0.38 |
5.5 | 1 | 56.0 | Closed | 0.88 | 7.5 | 2 | 140.0 | Closed | 0.02 |
7.5 | 1 | 140.0 | Aerobic | 0.08 | 5.5 | 0 | 98.0 | Closed | 0.71 |
7.5 | 1 | 98.0 | Closed | 0.14 | 7.5 | 1 | 98.0 | Closed | 0.14 |
7.5 | 1 | 56.0 | Aerobic | 0.59 | 7.5 | 1 | 98.0 | Closed | 0.14 |
7.5 | 0 | 98.0 | Anaerobic | 0.17 | 9.5 | 1 | 98.0 | Anaerobic | 0.14 |
9.5 | 2 | 98.0 | Closed | 0.22 | 7.5 | 0 | 56.0 | Closed | 0.48 |
7.5 | 1 | 98.0 | Closed | 0.14 | 5.5 | 1 | 98.0 | Anaerobic | 0.84 |
7.5 | 1 | 140.0 | Anaerobic | 0.01 | 7.5 | 2 | 56.0 | Closed | 0.53 |
7.5 | 0 | 140.0 | Closed | 0.01 | 5.5 | 2 | 98.0 | Closed | 0.74 |
9.5 | 1 | 140.0 | Closed | 0.02 | 9.5 | 1 | 98.0 | Aerobic | 0.49 |
9.5 | 1 | 56.0 | Closed | 0.76 | 7.5 | 2 | 98.0 | Anaerobic | 0.47 |
7.5 | 1 | 56.0 | Anaerobic | 0.61 |
Table 2 Designs and results based on RSM
pH | c(NaCl)/ (mmol·L-1) | Dosage/ (mg·L-1) | O2 | c/c0 | pH | c(NaCl)/ (mmol·L-1) | Dosage/ (mg·L-1) | O2 | c/c0 |
---|---|---|---|---|---|---|---|---|---|
7.5 | 2 | 98.0 | Aerobic | 0.08 | 7.5 | 0 | 98.0 | Aerobic | 0.11 |
7.5 | 1 | 98.0 | Closed | 0.14 | 5.5 | 1 | 98.0 | Aerobic | 0.66 |
5.5 | 1 | 140.0 | Closed | 0.52 | 9.5 | 0 | 98.0 | Closed | 0.38 |
5.5 | 1 | 56.0 | Closed | 0.88 | 7.5 | 2 | 140.0 | Closed | 0.02 |
7.5 | 1 | 140.0 | Aerobic | 0.08 | 5.5 | 0 | 98.0 | Closed | 0.71 |
7.5 | 1 | 98.0 | Closed | 0.14 | 7.5 | 1 | 98.0 | Closed | 0.14 |
7.5 | 1 | 56.0 | Aerobic | 0.59 | 7.5 | 1 | 98.0 | Closed | 0.14 |
7.5 | 0 | 98.0 | Anaerobic | 0.17 | 9.5 | 1 | 98.0 | Anaerobic | 0.14 |
9.5 | 2 | 98.0 | Closed | 0.22 | 7.5 | 0 | 56.0 | Closed | 0.48 |
7.5 | 1 | 98.0 | Closed | 0.14 | 5.5 | 1 | 98.0 | Anaerobic | 0.84 |
7.5 | 1 | 140.0 | Anaerobic | 0.01 | 7.5 | 2 | 56.0 | Closed | 0.53 |
7.5 | 0 | 140.0 | Closed | 0.01 | 5.5 | 2 | 98.0 | Closed | 0.74 |
9.5 | 1 | 140.0 | Closed | 0.02 | 9.5 | 1 | 98.0 | Aerobic | 0.49 |
9.5 | 1 | 56.0 | Closed | 0.76 | 7.5 | 2 | 98.0 | Anaerobic | 0.47 |
7.5 | 1 | 56.0 | Anaerobic | 0.61 |
Soruces of variation | Quadratic sum | Degree of freedom | F | Level of significance, P |
---|---|---|---|---|
Model | 2.18 | 14 | 23.38 | <0.0001 |
A-pH | 0.46 | 1 | 68.57 | <0.0001 |
B-c(NaCl) | 0.003 | 1 | 0.50 | 0.4907 |
C-dosage | 0.85 | 1 | 127.44 | <0.0001 |
D-DO | 0.004 | 1 | 0.66 | 0.4293 |
AB | 0.009 | 1 | 1.36 | 0.2636 |
AC | 0.04 | 1 | 5.43 | 0.0353 |
AD | 0.07 | 1 | 10.55 | 0.0058 |
BC | 0.0004 | 1 | 0.06 | 0.8099 |
BD | 0.03 | 1 | 4.09 | 0.0626 |
CD | 0.002 | 1 | 0.30 | 0.5899 |
A2 | 0.69 | 1 | 105.09 | <0.0001 |
B2 | 0.004 | 1 | 0.53 | 0.4783 |
C2 | 0.06 | 1 | 9.18 | 0.0090 |
D2 | 0.03 | 1 | 4.07 | 0.0634 |
Residual error | 0.09 | 14 | 0.007 | |
Lack of fit | 0.09 | 10 | 0.09 | |
Pure error | 0 | 4 | 0 | |
Sum | 2.27 | 28 |
Table 3 Analysis of variance based on RSM
Soruces of variation | Quadratic sum | Degree of freedom | F | Level of significance, P |
---|---|---|---|---|
Model | 2.18 | 14 | 23.38 | <0.0001 |
A-pH | 0.46 | 1 | 68.57 | <0.0001 |
B-c(NaCl) | 0.003 | 1 | 0.50 | 0.4907 |
C-dosage | 0.85 | 1 | 127.44 | <0.0001 |
D-DO | 0.004 | 1 | 0.66 | 0.4293 |
AB | 0.009 | 1 | 1.36 | 0.2636 |
AC | 0.04 | 1 | 5.43 | 0.0353 |
AD | 0.07 | 1 | 10.55 | 0.0058 |
BC | 0.0004 | 1 | 0.06 | 0.8099 |
BD | 0.03 | 1 | 4.09 | 0.0626 |
CD | 0.002 | 1 | 0.30 | 0.5899 |
A2 | 0.69 | 1 | 105.09 | <0.0001 |
B2 | 0.004 | 1 | 0.53 | 0.4783 |
C2 | 0.06 | 1 | 9.18 | 0.0090 |
D2 | 0.03 | 1 | 4.07 | 0.0634 |
Residual error | 0.09 | 14 | 0.007 | |
Lack of fit | 0.09 | 10 | 0.09 | |
Pure error | 0 | 4 | 0 | |
Sum | 2.27 | 28 |
Fig.3 Effects of factors on Se(Ⅳ) removal by FHC(Cl-)(A) Closed system, dosage of FHC(Cl-) =98 mg/L; (B) c(NaCl)=1 mmol/L, dosage of FHC(Cl-) =98 mg/L; (C) closed system, c(NaCl) =1 mmol/L; (D) closed system, pH =7.5; (E) pH =7.5, dosage of FHC(Cl-) =98 mg/L; (F) pH =7.5, c(NaCl)=1 mmol/L.
Sample | Mass fraction(%) | |||
---|---|---|---|---|
O2- | OH- | H2O | OH-+ H2O | |
FHC(Cl-) | 23.05 | 28.33 | 48.62 | 76.95 |
pH=5.5 | 22.35 | 29.89 | 47.76 | 77.65 |
pH=7.5 | 25.09 | 28.18 | 46.73 | 74.91 |
pH=9.5 | 31.78 | 38.45 | 29.80 | 70.20 |
Table 4 Percentage of different chemical speciation of oxygen
Sample | Mass fraction(%) | |||
---|---|---|---|---|
O2- | OH- | H2O | OH-+ H2O | |
FHC(Cl-) | 23.05 | 28.33 | 48.62 | 76.95 |
pH=5.5 | 22.35 | 29.89 | 47.76 | 77.65 |
pH=7.5 | 25.09 | 28.18 | 46.73 | 74.91 |
pH=9.5 | 31.78 | 38.45 | 29.80 | 70.20 |
[1] | Fordyce F. M., Essentials of Medical Geology, 2013, 16, 375—416 |
[2] | Hatfield D.L., Selenium: Its Molecular Biology and Role in Human Health, Springer Publishing Company, NewYork, 2006, 1—326 |
[3] | Lemly A. D., Ecotoxicology & Environmental Safety, 2004, 59, 44—56 |
[4] | Cleverley J. S., Bastrakov E. N., Computers & Geosciences, 2005, 31(6), 756—767 |
[5] | Liang L., Yang W., Guan X. H., Li J., Xu Z., Wu J., Water Research, 2013, 47(15), 5846—5855 |
[6] | Ling L., Pan B. C., Zhang W. X., Water Research, 2015, 71, 274—281 |
[7] | Scheinost A. C., Kirsch R., Banerjee D., Fernandez-Martinez A., Zaenker H., Funke H., Journal of Contaminant Hydrology, 2008, 102(3/4), 228—245 |
[8] | Naveau A., Monteil-Rivera F., Guillon E., Dumonceau J., Environmental Science & Technology, 2007, 41(15), 5376—5382 |
[9] | Breynaert E., Bruggeman C., Maes A., Environmental Science & Technology, 2008, 42, 3595—3601 |
[10] | Missana T., Alonso U., Scheinost A. C., Granizo N., García-Gutiérrez M., Geochimica et Cosmochimica Acta, 2009, 73(20), 6205—6217 |
[11] | Loyo R. L. D. A., Nikitenko S. I., Scheinost A. C., Simonoff M., Environmental Science & Technology, 2008, 42(7), 2451—2456 |
[12] | Myneni S. C. B., Tokunaga T. K., Science, 1997, 278(5340), 1106—1109 |
[13] | Wu D. L., Feng Y., Ma L. M., Jounal of Tongji University (Natural Science), 2011, 39(11), 1657—1662 |
(吴德礼, 冯勇, 马鲁铭.同济大学学报(自然科学版), 2011,39(11), 1657—1662) | |
[14] | Liang L. P., Yang W. J., Guan X. H., Journal of Harbin Institute of Technology, 2014, 46, 20—24 |
(梁丽萍, 杨文君, 关小红.哈尔滨工业大学学报, 2014,46(6), 20—24) | |
[15] | Liang L.P., Magnetic Field Enhanced Se(Ⅳ) and Se(Ⅵ) Removal by Zero-Valent Iron: the Efficiency and Mechanism , Harbin Institute of Technology,Haerbin, 2014 |
(梁丽萍. 磁场强化零价铁去除水中Se(Ⅳ)和Se(Ⅵ)的效能和机制, 哈尔滨: 哈尔滨工业大学, 2014) | |
[16] | Liu Y. Q., Majetich S. A., Tilton R. D., Sholl D. S., Lowry G. V., Environmental Science & Technology, 2005, 39, 1338—1345 |
[17] | Kim H. S., Kim T., Ahn J. Y., Hwang K. Y., Park J. Y., Lim T. T., Chemical Engineering Journal, 2012, 197, 16—23 |
[18] | Lin W. X., Yao X., Zhu X. H., Li Y., He W., Traditional Chinese Drug Research and Clinical Pharmacology, 2016, 2, 269—272 |
(林伟鑫, 姚曦, 朱秀辉, 李勇, 何伟. 中药新药与临床药理, 2016, 2, 269—272) | |
[19] | Fu M., Wu D. L., Zhang Y. L., Zhang Y., Chem. J. Chinese Universities, 2016, 37(12), 2221—2227 |
(付茂, 吴德礼, 张亚雷, 张勇.高等学校化学学报, 2016,37(12), 2221—2227) | |
[20] | Liu X. L., Fattahi M., Montavon G., Grambow B., Radiochimica Acta, 2008, 96(8), 473—479 |
[21] | Jin H., Wang J., Ji Y., Chen M. M., Zhang Y., Wang Q., Cong Y. Q., Acta Physico-Chimica Sinica, 2015, 5, 955—964 |
(金环, 王娟, 姬云, 陈媚媚, 张轶, 王齐, 丛燕青. 物理化学学报, 2015, 5, 955—964) | |
[22] | Lu T. C., Huang N. K., Lin L. B., Zhang J., Nuclear Technology, 1996, 6, 332—338 |
(卢铁城, 黄宁康, 林理彬, 张晋. 核技术, 1996, 6, 332—338) | |
[23] | Knipe S. W., Mycroft J. R., Pratt A. R., Nesbitt H. W., Bancroff G. M., Geochimica et Cosmochimica Acta, 1995, 59(6), 1079—1090 |
[24] | Rumble J. R., Bickham D. M., Powell C. J., Surf. & Int. Ana, 1992, 19, 241—246 |
[25] | Kang M. L., Liu C. L., Chen F. R., Scientia Sinica Chimica, 2013, 43, 536—543 |
(康明亮, 刘春立, 陈繁荣.中国科学: 化学, 2013,43(5), 536—543) |
[1] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(Album-3): 0. |
[2] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible-Light-Induced CO2 Reduction in Aqueous [J]. Chem. J. Chinese Universities, 2022, 43(Album-3): 0. |
[3] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(Album-3): 0. |
[4] | GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin. Structure Regulation of Single-Atom Catalysts in Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(Album-2): 0. |
[5] | JIN Xiangyuan, ZHANG Libing, SUN Xiaofu, HAN Buxing. Electrocatalytic CO2 Reduction Over Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(Album-2): 0. |
[6] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[7] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[8] | ZHOU Ying, HE Peinan, FENG Haisong, ZHANG Xin. Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210640. |
[9] | ZHANG Xiang, XIE Xulan, XIONG Likun, PENG Yang. Urchin-like Gold Nanoneedle for Efficient Electrocatalytic CO2 Reduction [J]. Chem. J. Chinese Universities, 2021, 42(9): 2824. |
[10] | XU Xiaona, SHI Chengqian, DING Xiaohai, XUE Junhong, WANG Dong, TIAN Lixian, LI Baili, ZHU Yanying, YU Xi. Surface Modification and Work Function Control of Carbon Film Electrode Based on Electrochemical Diazonium Reduction [J]. Chem. J. Chinese Universities, 2021, 42(6): 1908. |
[11] | WANG Peng, YANG Min, TANG Sengpei, CHEN Feitai, LI Youji. Preparation of Cellular C3N4/CoSe2/GA Composite Photocatalyst and Its CO2 Reduction Activity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1924. |
[12] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[13] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chem. J. Chinese Universities, 2021, 42(2): 624. |
[14] | WANG Yong, DONG Biao, SUN Jiao, DONG Delu, SUN Liankun. Synthesis and Spectral Properties of Ag/SiO2-Al2O3 Composite Nanomaterial Based on Molecular Sieve Template [J]. Chem. J. Chinese Universities, 2021, 42(10): 3233. |
[15] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chem. J. Chinese Universities, 2020, 41(9): 1917. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||