Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (7): 20240546.doi: 10.7503/cjcu20240546
• Polymer Chemistry • Previous Articles Next Articles
Received:
2024-12-18
Online:
2025-07-10
Published:
2025-04-14
Contact:
ZHOU Dezhong
E-mail:dezhong.zhou@xjtu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Zhili, ZHOU Dezhong. Preparation of Hyperbranched Poly(ethylene glycol)s via Reversible Addition-fragmentation Chain Transfer Free Radical Polymerization of Multivinyl Monomers and Their Application in Stem Cell Culture[J]. Chem. J. Chinese Universities, 2025, 46(7): 20240546.
Time/h | Mn | Mw | Ð | PEGDA conversion(%) | Time/h | Mn | Mw | Ð | PEGDA conversion(%) |
---|---|---|---|---|---|---|---|---|---|
0 | 500 | 600 | 1.19 | 6.0 | 9400 | 14900 | 1.58 | 38.0 | |
4.0 | 3400 | 4300 | 1.08 | 12.4 | 6.5 | 11500 | 20600 | 1.79 | 41.2 |
5.0 | 5600 | 7100 | 1.28 | 28.1 | After purification | 15100 | 26300 | 1.75 | |
5.5 | 7100 | 10100 | 1.42 | 33.6 |
Table 1 Reaction results for the synthesis of HBP-1 at different time points
Time/h | Mn | Mw | Ð | PEGDA conversion(%) | Time/h | Mn | Mw | Ð | PEGDA conversion(%) |
---|---|---|---|---|---|---|---|---|---|
0 | 500 | 600 | 1.19 | 6.0 | 9400 | 14900 | 1.58 | 38.0 | |
4.0 | 3400 | 4300 | 1.08 | 12.4 | 6.5 | 11500 | 20600 | 1.79 | 41.2 |
5.0 | 5600 | 7100 | 1.28 | 28.1 | After purification | 15100 | 26300 | 1.75 | |
5.5 | 7100 | 10100 | 1.42 | 33.6 |
Time/h | Mn | Mw | Ð | PEGDA conversion(%) | Time/h | Mn | Mw | Ð | PEGDA conversion(%) |
---|---|---|---|---|---|---|---|---|---|
0 | 600 | 700 | 1.15 | 25 | 8700 | 19700 | 2.28 | 63.4 | |
21 | 7300 | 13700 | 1.87 | 57.2 | 26 | 8800 | 21000 | 2.40 | 64.4 |
23 | 7800 | 16300 | 2.10 | 60.7 | After purification | 14900 | 31500 | 2.12 |
Table 2 Reaction results for the synthesis of HBP-2 at different time points
Time/h | Mn | Mw | Ð | PEGDA conversion(%) | Time/h | Mn | Mw | Ð | PEGDA conversion(%) |
---|---|---|---|---|---|---|---|---|---|
0 | 600 | 700 | 1.15 | 25 | 8700 | 19700 | 2.28 | 63.4 | |
21 | 7300 | 13700 | 1.87 | 57.2 | 26 | 8800 | 21000 | 2.40 | 64.4 |
23 | 7800 | 16300 | 2.10 | 60.7 | After purification | 14900 | 31500 | 2.12 |
HBP⁃1/gel⁃SH | HBP⁃2/gel⁃SH | ||
---|---|---|---|
Concentration of HBP⁃1/(mg∙mL-1) | Gelation time/s | Concentration of HBP⁃2/(mg∙mL-1) | Gelation time/s |
40 | 30 | 40 | 110 |
80 | 20 | 80 | 70 |
100 | 15 | 100 | 50 |
Table 3 Gelation time of HBP and gel-SH mixture*
HBP⁃1/gel⁃SH | HBP⁃2/gel⁃SH | ||
---|---|---|---|
Concentration of HBP⁃1/(mg∙mL-1) | Gelation time/s | Concentration of HBP⁃2/(mg∙mL-1) | Gelation time/s |
40 | 30 | 40 | 110 |
80 | 20 | 80 | 70 |
100 | 15 | 100 | 50 |
HBP⁃1/gel⁃SH | HBP⁃2/gel⁃SH | ||||
---|---|---|---|---|---|
Concentration of HBP⁃1/(mg∙mL-1) | G''/Pa | G'/Pa | Concentration of HBP⁃2/(mg∙mL-1) | G''/Pa | G'/Pa |
40 | 104 | 7985 | 40 | 72 | 4206 |
100 | 124 | 18735 | 100 | 73 | 9876 |
Table 4 G′ and G′′ of HBP/gel⁃SH hydrogels
HBP⁃1/gel⁃SH | HBP⁃2/gel⁃SH | ||||
---|---|---|---|---|---|
Concentration of HBP⁃1/(mg∙mL-1) | G''/Pa | G'/Pa | Concentration of HBP⁃2/(mg∙mL-1) | G''/Pa | G'/Pa |
40 | 104 | 7985 | 40 | 72 | 4206 |
100 | 124 | 18735 | 100 | 73 | 9876 |
[26] | Gao Y. S., Zhou D. Z., Lyu J., A S., Xu Q., Newland B., Matyjaszewski K., Tai H. Y., Wang W. X., Nat. Rev. Chem., 2020, 4(4), 194—212 |
[27] | Zhao T. Y., Zheng Y., Poly J., Wang W. X., Nat. Comm., 2013, 4(1), 1873 |
[28] | Lyu J., Li Y. H., Li Z. S., Polanowski P., Jeszka J. K., Matyjaszewski K., Wang W. X., Angew. Chem. Int. Ed., 2023, 62(5), e202212235 |
[29] | Vlierberghe S. V., Schacht E., Dubruel P., Eur. Polym., 2011, 47(5), 1039—1047 |
[30] | Göckler T., Haase S., Kempter X., Pfister R., Maciel B. R., Grimm A., Molitor T., Willenbacher, N., Schepers U., Adv. Healthc. Mater., 2021, 10(14), 2100206 |
[31] | Butterworth P. H. W., Baum H., Porter J. W., Arch. Biochem. Biophys., 1967, 118(3), 716—723 |
[32] | Dong Y. X., Qin Y., Dubaa M., Killion J., Gao Y. S., Zhao T. Y., Zhou D. Z., Duscher D., Geever L., Gurtner G. C., Wang W. X., Polym. Chem., 2015, 6(34), 6182—6192 |
[33] | Zhao T. Y., Zhang H., Newland B., Aied A., Zhou D. Z., Wang W. X., Angew. Chem. Int. Ed., 2014, 53(24), 6095—6100 |
[34] | Gao Y. S., Zhou D. Z., Zhao T. Y., Wei X., McMahon S., O’Keeffe Ahern J., Wang W., Greiser U., Rodriguez B. J., Wang W. X., Macromolecules, 2015, 48(19), 6882—6889 |
[35] | Sawicki L. A., Kloxin A. M., Biomater. Sci., 2014, 2(11), 1612—1626 |
[36] | Sabapathy V., Kumar S., J. Cell. Mol. Med., 2016, 20(8), 1571—1588 |
[37] | Wu Z. W., Su Y. Z., Li J. X., Liu X. L., Liu Y., Zhao L., Li L. X., Zhang L. Y., Stem. Cell Res. Ther., 2024, 15, 367 |
[1] | Tavassoli H., Alhosseini S. N., Tay A., Chan P. P. Y., Weng O. S. K., Warkiani M. E., Biomaterials, 2018, 181, 333—346 |
[2] | Serra M., Brito C., Correia C., Alves P. M., Trends Biotechnol., 2012, 30(6), 350—359 |
[3] | Rafiq Q. A., Coopman K., Hewitt C. J., Curr. Opin. Chem. Eng., 2013, 2(1), 8—16 |
[4] | Gao Y. S., Peng K., Mitragotri S., Adv. Mater., 2021, 33(25), 2006362 |
[5] | Lou J. Z., Mooney D. J., Nat. Rev. Chem., 2022, 6(10), 726—744 |
[6] | Liang Y. P., He J. H., Guo B. L., ACS Nano, 2021, 15(8), 12687—12722 |
[7] | Hughes C. S., Postovit L. M., Lajoie G. A., Proteomics, 2010, 10(9), 1886—1890 |
[8] | Mathew M., Rad M. A., Mata J. P., Mahmodi H., Kabakova I. V., Raston C. L., Tang Y., Tipper J. L., Tavakoli J., Mater. Today Chem., 2022, 23, 100656 |
[9] | Sánchez⁃Cid P., Jiménez⁃Rosado M., Romero A., Pérez⁃Puyana V., Polymers, 2022, 14(15), 3023 |
[10] | Wen J., Xu Z. M., Qi D. S., Wang J. Y., Yu S. J., He C. L., Han B., Chem. J. Chinese Universities, 2019, 40(9), 2020—2027 |
文静, 徐志民, 齐德胜, 王佳玉, 于双江, 贺超良, 韩冰. 高等学校化学学报, 2019, 40(9), 2020—2027 | |
[11] | Jaspers M., Dennison M., Mabesoone M. F. J., MacKintosh F. C., Rowan A. E., Kouwer P. H. J., Nat. Comm., 2014, 5(1), 5808 |
[12] | Wang H. W., Liang X. C., Xu K., Tan Y., Lu C. G., Wang P. X., Chem. J. Chinese Universities, 2016, 37(4), 752—760 |
王海卫, 梁学称, 徐昆, 谭颖, 路璀阁, 王丕新. 高等学校化学学报, 2016, 37(4), 752—760 | |
[13] | McMahon S., Kennedy R., Duffy P., Vasquez J. M., Wall J. G., Tai H., Wang W. X., ACS Appl. Mater. Interfaces, 2016, 8(40), 26648—26656 |
[14] | Kennedy R., Hassan W. U., Tochwin A., Zhao T. Y., Dong Y. X., Wang Q., Tai H. Y., Wang W. X., Polym. Chem., 2014, 5(6), 1838 |
[15] | Zhang T., Jia X. L., Hou Z. Y., Xie G., Zhang L. B., Zhu J. T., Chem. Res. Chinese Universities, 2023, 39(5), 803—808 |
[16] | Qi Y., Fan H. L., Chem. Res. Chinese Universities, 2024, 40(5), 776—785 |
[17] | Hu X. Y., Mao N., Yan X. W., Huang L., Liu X., Yang H. G., Sun Q. Q., Liu X. Y., Jia H. Y., Chem. Res. Chinese Universities, 2024, 40(5), 824—841 |
[18] | Hassan W., Dong Y. X., Wang W. X., Stem. Cell Res. Ther., 2013, 4(32), 63—67 |
[19] | Kar M., Vernon Shih Y. R., Velez D. O., Cabrales P., Varghese S., Biomaterials, 2016, 77, 186—197 |
[20] | Xu Q., A S., Gao Y. S., Guo L. R., Creagh⁃Flynn J., Zhou D. Z., Greiser U., Dong Y. X., Wang F. G., Tai H. Y., Liu W. G., Wang W., Wang W. X., Acta Biomater., 2018, 75, 63—74 |
[21] | Zhao T. Y., Sellers D. L., Cheng Y. L., Horner P. J., Pun S. H., Biomacromolecules, 2017, 18(9), 2723—2731 |
[22] | Chimala P., Perera M. M., Wade A., McKenzie T., Allor J., Ayres N., Polym. Chem., 2021, 12(30), 4384—4393 |
[23] | Jiang Y., Zhan D. Z., Zhang M., Zhu Y., Zhong H. Q., Wu Y. F., Tan Q. W., Dong X. H., Zhang D. H., Hadjichristidis N., Angew. Chem. Int. Ed., 2023, 62(42), e202310832 |
[24] | Tochwin A., El⁃Betany A., Tai H. Y., Chan K. Y., Blackburn C., Wang W. X., Polymers, 2017, 9(9), 443 |
[25] | Li Z. L., Yong H. Y., Wang K. X., Zhou Y. N., Lyu J., Liang L. R., Zhou D. Z., Chem. Comm., 2023, 59(28), 4142—4157 |
[1] | HAO Yongliang, LI Jian, WANG Zehua, GE Jiechao. Active Shrinkage Hydrogel Based on Red Emissive Carbon Dots Photosensitizers for Bacterial Infected Wound Healing [J]. Chem. J. Chinese Universities, 2025, 46(6): 20240409. |
[2] | JIANG Yunjing, HUANG Tongdai, CAO Yuyu, BAI Rongxian, WU Jie, WANG Zuxi, SUN Hongmei. Construction and Application of Polylysine Peptide Modified Gelatin Multifunctional Hydrogel [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230312. |
[3] | CHEN Shunlan, XU Danni, LI Xuefeng, PENG Gege, HUANG Yiwan, LONG Shijun, ZHANG Gaowen. Environmental Responsive Adhesion Behavior of Metal Ion Crosslinked Thermosensitive Double Network Hydrogel [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230192. |
[4] | CHEN Weipeng, KONG Xiangyu, WEN Liping. Hydrogel-based Bioinspired Ion Channels: Fabrication and Controllable Ion Transport [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220772. |
[5] | WANG Gang, LIU Genqi, ZHAO Lingli, WANG Yue, LIU Lisha, SUN Chenxin, MA Xiaoyan. Nonylphenol Molecularly Imprinted 2D Photonic Crystal Hydrogel Sensor [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220757. |
[6] | ZHANG Qi, SUN Rui, ZHANG Yu, LI Xia, ZHU Ying. Construction and Properties of DNA Hybrid Hydrogels [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220761. |
[7] | WANG Jiaxin, LIU Jia, QIN Jinmei, NYV Mondele Mbola, MENG Zihui, XUE Min. Protein Folding Assisted by Covalent Hydrogel Based on Amphiphilic Supramolecular [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230250. |
[8] | ZOU Shaoshuang, YANG Peng, LIU Tao. Synthesis of a Multiple Stimulus-responsive Multicolor Fluorescent Hydrogel [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230175. |
[9] | WANG Xuebin, XUE Yuan, MAO Hua’nyu, XIANG Yanxin, BAO Chunyan. Preparation of Photo/reduction Dual-responsive Hydrogel Microspheres and Their Application in Three-dimensional Cell Culture [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220116. |
[10] | HUANG Yi, LYU Lingling, PAN Xiaopeng, SUN Guangdong, LI Yongqiang, YAO Juming, SHAO Jianzhong. Three-dimensional Printing of Photocrosslinked Self-supporting Silk Fibroin Hydrogels [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210841. |
[11] | ZHOU Yonghui, LI Yao, WU Yuxuan, TIAN Jing, XU Longquan, FEI Xu. Synthesis of A Novel Photoluminescence Self-healing Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210606. |
[12] | YAN Shuting, YAO Yuan, TAO Xinfeng, LIN Shaoliang. Synthesis and Properties of Polypeptoid Hydrogels Containing Sulfonium Groups [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220381. |
[13] | GAO Huiling, CAO Zhenzhen, GU Fang, WANG Haijun. Monte Carlo Simulation on Self-healing Behaviour of Hydrogen-bonded Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220482. |
[14] | CAI Yaqian, ZHANG Jiahuai, LIU Fangzhe, LI Haichao, SHI Jianping, GUAN Shuang. Protein-based Hydrogel Assisted by Hofmeister Effect for Strain Sensor [J]. Chem. J. Chinese Universities, 2021, 42(8): 2609. |
[15] | LUO Chunhui, ZHAO Yufei. Facile Synthesis and Properties of Robust and Anti-swelling Hydrogels [J]. Chem. J. Chinese Universities, 2021, 42(6): 2024. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||