Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (2): 20240372.doi: 10.7503/cjcu20240372
• Article: Inorganic Chemistry • Previous Articles Next Articles
XIE Zhuoxue1,2, KOU Yan2, SHI Quan2, TIAN Ying1()
Received:
2024-07-30
Online:
2025-02-10
Published:
2024-11-19
Contact:
TIAN Ying
E-mail:greenhusk@126.com
Supported by:
CLC Number:
TrendMD:
XIE Zhuoxue, KOU Yan, SHI Quan, TIAN Ying. Synthesis and Temperature Control Performance of Silica Gel Waste Composite Phase Change Materials[J]. Chem. J. Chinese Universities, 2025, 46(2): 20240372.
Sample | Melting | Crystallizing | R(%) | ||
---|---|---|---|---|---|
Tonset/℃ | ΔHm/(J·g‒1) | Tonset/℃ | ΔHc/(J·g‒1) | ||
DA | 30.7 | 170.9 | 25.4 | 170.3 | — |
HD | 48.9 | 240.8 | 48.0 | 236.3 | — |
DA⁃HD | 18.4 | 178.0 | 14.8 | 178.2 | — |
PSD⁃DA⁃HD | 18.2 | 109.9 | 18.9 | 105.6 | 61.7 |
PSD/EG⁃DA⁃HD | 26.0 | 88.1 | 26.2 | 85.1 | 49.5 |
Table 1 Phase change properties of silica composite phase change materials
Sample | Melting | Crystallizing | R(%) | ||
---|---|---|---|---|---|
Tonset/℃ | ΔHm/(J·g‒1) | Tonset/℃ | ΔHc/(J·g‒1) | ||
DA | 30.7 | 170.9 | 25.4 | 170.3 | — |
HD | 48.9 | 240.8 | 48.0 | 236.3 | — |
DA⁃HD | 18.4 | 178.0 | 14.8 | 178.2 | — |
PSD⁃DA⁃HD | 18.2 | 109.9 | 18.9 | 105.6 | 61.7 |
PSD/EG⁃DA⁃HD | 26.0 | 88.1 | 26.2 | 85.1 | 49.5 |
Sample | Mass loss(%) | PCM content(%) | Initial decomposition temperature/℃ | End decomposition temperature/℃ |
---|---|---|---|---|
PSD | 9.03 | 0 | 88.7 | 550.5 |
DA⁃HD | 94.50 | 100.00 | 120.9 | 390.8 |
PSD⁃DA⁃HD | 61.80 | 61.74 | 92.2 | 357.0 |
PSD/EG⁃DA⁃HD | 58.60 | 57.49 | 92.2 | 366.2 |
Table 2 TG data of silica composite phase change materials
Sample | Mass loss(%) | PCM content(%) | Initial decomposition temperature/℃ | End decomposition temperature/℃ |
---|---|---|---|---|
PSD | 9.03 | 0 | 88.7 | 550.5 |
DA⁃HD | 94.50 | 100.00 | 120.9 | 390.8 |
PSD⁃DA⁃HD | 61.80 | 61.74 | 92.2 | 357.0 |
PSD/EG⁃DA⁃HD | 58.60 | 57.49 | 92.2 | 366.2 |
Sample | λ/(W·m‒1·K‒1) | |||
---|---|---|---|---|
Run1 | Run2 | Run3 | Average | |
DA⁃HD | 0.1734 | 0.1647 | 0.1756 | 0.1712 |
PSD⁃DA⁃HD | 0.3585 | 0.3679 | 0.3685 | 0.3650 |
PSD/EG⁃DA⁃HD | 0.9753 | 0.9445 | 0.9342 | 0.9513 |
Cement mortar | 0.6352 | 0.6320 | 0.6286 | 0.6319 |
C⁃PSD⁃DA⁃HD | 0.5949 | 0.5954 | 0.5978 | 0.5961 |
C⁃PSD/EG⁃DA⁃HD | 0.7394 | 0.7377 | 0.7368 | 0.7380 |
Table 3 Thermal conductivity data of silica composite phase change materials
Sample | λ/(W·m‒1·K‒1) | |||
---|---|---|---|---|
Run1 | Run2 | Run3 | Average | |
DA⁃HD | 0.1734 | 0.1647 | 0.1756 | 0.1712 |
PSD⁃DA⁃HD | 0.3585 | 0.3679 | 0.3685 | 0.3650 |
PSD/EG⁃DA⁃HD | 0.9753 | 0.9445 | 0.9342 | 0.9513 |
Cement mortar | 0.6352 | 0.6320 | 0.6286 | 0.6319 |
C⁃PSD⁃DA⁃HD | 0.5949 | 0.5954 | 0.5978 | 0.5961 |
C⁃PSD/EG⁃DA⁃HD | 0.7394 | 0.7377 | 0.7368 | 0.7380 |
Sample | Constant temperature duration/min | ||
---|---|---|---|
Heating process | Cooling process | Total time | |
Cement mortar | 1.45 | 2.25 | 3.7 |
C⁃PSD⁃DA⁃HD | 6.73 | 5.97 | 12.7 |
C⁃PSD/EG⁃DA⁃HD | 3.37 | 3.33 | 6.7 |
Table 4 Temperature control duration of cement mortar and phase change mortar
Sample | Constant temperature duration/min | ||
---|---|---|---|
Heating process | Cooling process | Total time | |
Cement mortar | 1.45 | 2.25 | 3.7 |
C⁃PSD⁃DA⁃HD | 6.73 | 5.97 | 12.7 |
C⁃PSD/EG⁃DA⁃HD | 3.37 | 3.33 | 6.7 |
Sample | Time of temperature control at 18—32 ℃/min | ||
---|---|---|---|
Heating process | Cooling process | Total time | |
Blank group experiment | 5.3 | 5.3 | 10.6 |
Phase change group experiment | 18.0 | 21.0 | 39.0 |
Table 5 Temperature control time of phase change mortar and blank control group
Sample | Time of temperature control at 18—32 ℃/min | ||
---|---|---|---|
Heating process | Cooling process | Total time | |
Blank group experiment | 5.3 | 5.3 | 10.6 |
Phase change group experiment | 18.0 | 21.0 | 39.0 |
1 | Ibanez M., Lázaro A., Zalba B., Cabeza L. F., Appl. Therm. Eng., 2005, 25, 1796—1807 |
2 | Bentz D. P., Turpin R., Cem. Concr. Compos., 2007, 29, 527—532 |
3 | Pasupathy A., Velraj R., Seeniraj R., Renew. Sustain. Energy Rev., 2008, 12, 39—64 |
4 | Baetens R., Jelle B. P., Gustavsen A., Energy Build., 2010, 42, 1361—1368 |
5 | Khudhair A. M., Farid M. M., Energy Convers. Manag., 2004, 45, 263—275 |
6 | Sadineni S. B., Madala S., Boehm R. F., Renew. Sustain. Energy Rev., 2011, 15, 3617—3631 |
7 | Kuznik F., Virgone J., Johannes K., Renew. Energy, 2011, 36, 1458—1462 |
8 | Alawadhi E.M., Alqallaf H. J., Energy Convers. Manag., 2011, 52, 2958—2964 |
9 | Behzadi S., Farid M. M., HVAC&R Res., 2011, 17, 366—376 |
10 | Milian Y. E., Ushak S., J. Sol⁃Gel Sci. Technol., 2020, 94, 67—79 |
11 | Zhu Y., Liang S., Wang H., Zhang K., Jia X., Tian C., Zhou Y., Wang J., Energy Convers. Manage., 2016, 119, 151—162 |
12 | Rudd A. F., ASHRAE Trans., 1993, 99,pt 2 |
13 | Kuznik F., David D., Johannes K., Roux J. J., Renew. Sustain. Energy Rev., 2011, 15, 379—391 |
14 | Cabeza L. F., Castellon C., Nogues M., Medrano M., Leppers R., Zubillaga O., Energy Build., 2007, 39, 113—119 |
15 | Mo S., Mo B., Wu F., Jia L., Chen Y., J. Sol⁃Gel Sci. Technol., 2021, 99, 220—229 |
16 | Čejková J., Hanuš J., Štěpánek F., J. Colloid Interface Sci., 2010, 346, 352—360 |
17 | Min X., Fang M., Huang Z., Liu Y. G., Huang Y., Wen R., Qian T., Wu X., Sci. Rep., 2015, 5, 12964 |
18 | Tang B., Cui J., Wang Y., Jia C., Zhang S., Solar Energy, 2013, 97, 484—492 |
19 | Tang F., Liu L., Alva G., Jia Y., Fang G., Solar Energy Mater. Solar Cells, 2017, 160, 1—6 |
20 | Qian Y., Wei P., Jiang P., Li Z., Yan Y., Ji K., Deng W., Energy Convers. Manage, 2013, 76, 101—108 |
21 | Williams J. D., Peterson G. P., Nanomaterials, 2021, 11(10), 2578 |
22 | Anand A., Kant K., Shukla A., Chen C. R., Sharma A., Energies, 2021, 14, 4509 |
23 | Sun K. Y., Research on a New Passive Solar Collector⁃storage Wall System with Phase Change Materials, University of Chinese Academy of Sciences, Beijing, 2021 |
孙克衍. 导热增强型有机相变材料的合成与应用研究, 北京: 中国科学院大学, 2021 | |
24 | Gu Q. J., Fei H., Wang L. Y., Fang M., Jiang D. H., Zhao Y. C., Chem. Ind. Engin. Prog., 2019, 38(11), 5033—5039 |
顾庆军, 费华, 王林雅, 方敏, 蒋达华, 赵运超. 化工进展, 2019, 38(11), 5033—5039 | |
25 | Li J. R., He L.H., Liu T. Z., Cao X. J., Zhu H., Solar Energy Mater. Solar Cells, 2013, 118, 48—53 |
26 | Fu Z., Su L., Liu M., Li J., Li J., Zhang Z., Li B., J. Sol⁃Gel Sci. Technol., 2016, 80, 180—188 |
27 | Sun D., Stduies on Synthesis and Application of Thermally Enhanced Organic Phase Change Materials, Dalian University of Technology,Dalian, 2016 |
孙丹. 新型被动式太阳能相变集热蓄热墙系统研究, 大连: 大连理工大学, 2016 | |
28 | Zhang H. Z., Wang X. D., Wu D., J. Colloid Interface Sci., 2010, 246—255 |
29 | Li B. X., Liu T. X., Hu L. Y., Wang Y. F., Gao L., ACS Sustain Chem. Eng., 2013, 1, 374—380 |
30 | Wang Y., Li L., New Chem. Mater., 2016, 44(7), 64—66 |
王宇, 李琳. 化工新型材料, 2016, 44(7), 64—66 | |
31 | Wu Y. N., Wang X., Tang B. T., Fine Chem., 2023, 1—12 |
吴亚楠, 王璇, 唐炳涛. 精细化工, 2023, 1—12 | |
32 | Bai J. G., Yuan Z. J., Liu Y., Zhang Y. S., Lu X. F., Chem. Ind. Engin. Prog., 2022, 41(8), 4441—4448 |
白金刚, 苑正己, 刘雨, 张义师, 吕喜风. 化工进展, 2022, 41(8), 4441—4448 | |
33 | Kong W., Lei Y., Jiang Y., Lei J., J. Therm. Anal. Calorim., 2017, 130, 1011—1019 |
34 | Zhang X. G., Huang Z. H., Ma B., Wen R. L., Zhang M., Huang Y. T., Fang M. H., Liu Y. G., Wua X., RSC Adv., 2016, 6, 58740—58748 |
35 | Zhang X. G., Huang Z. H., Ma B., Wen R. L., Min X., Huang Y. T., Yin Z. Y., Liu Y. G., Fang M. H., Wu X., Thermochim. Acta, 2016, 638, 35—43 |
36 | Ramakrishnan S., Sanjayan J., Wang X. M., Alam M., Wilson J., Appl. Energy, 2015, 157, 85—94 |
37 | Liu J., Study on the Indoor Thermal Environment and Human Thermal Comfort in Natural Ventilation Building in Summer⁃hot and Winter⁃cold Zone, Chongqing University, Chongqing, 2007 |
刘晶. 夏热冬冷地区自然通风建筑室内热环境与人体热舒适的研究, 重庆: 重庆大学, 2007 | |
38 | Mao Y., Study on Climate Adaptability of Human Beings to Thermal Comfort in China, Xi'an University of Architecture and Technology, Xi'an, 2007 |
茅艳. 人体热舒适气候适应性研究, 西安: 西安建筑科技大学, 2007 |
[1] | LU Yidong, HUO Zhipeng, ZHANG Hong, ZHONG Guoqiang. Preparation of Micron Plate Sm2O3 Fillers Reinforced High-density Polyethylene Composites for Neutron and Gamma Radiation Shielding [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240142. |
[2] | LIU Xuan, CHEN Qipei, OU Jingmei, HOU Jian. Solid Tunable Ratiometric Fluorescence Thermometers Based on Triarylboron-Phase Change Materials [J]. Chem. J. Chinese Universities, 2024, 45(8): 20240189. |
[3] | HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748. |
[4] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[5] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[6] | ZHANG Shuting, AN Qi. Progress on the Design and Fabrication of High Performance Piezoelectric Flexible Materials Based on Polyvinylidene Fluoride [J]. Chem. J. Chinese Universities, 2021, 42(4): 1114. |
[7] | BA Zhichen, LIANG Daxin, XIE Yanjun. Progress of MXenes Composites: Interface Modification and Structure Design [J]. Chem. J. Chinese Universities, 2021, 42(4): 1225. |
[8] | LI Boxin, YANG Junge, YIN Dezhong, GAO Chengqian, ZHANG Qiuyu. Preparation of Large-sized Microencapsulated Phase Change Materials Through Pickering Emulsion Stabilized by Monodisperse Polymer Microspheres [J]. Chem. J. Chinese Universities, 2020, 41(9): 2085. |
[9] | NING Qiuyang, FENG Wei, WU Guoguang. Preparation of InN-In2O3 Nanocomposite with Bottle-shaped Structure and Its Enhanced Formaldehyde Gas Sensitivity [J]. Chem. J. Chinese Universities, 2020, 41(12): 2804. |
[10] | LI Ze, WANG Jianjiang, GAO Haitao, ZHAO Fang. Fabrication and Microwave Absorption Mechanism of PCIP/CoFe2O4/PANI Composites [J]. Chem. J. Chinese Universities, 2019, 40(8): 1784. |
[11] | YIN Yanhong,LI Ke,DONG Hongyu,JIN Cheng,XIAO Xinglu,GAO Yicong,YANG Shuting. Performance of Ru/graphene/carbon Nanotube Composites with Three-dimensional Network Structure as Positive Electrode Catalysts for Lithium Oxygen Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1271. |
[12] | CHEN Yuan,ZHAO Xuejing,LIANG Hongwei,WU Xiuwen,ZHANG Jinlin. Effect of Emulsification Process on the Thermal Properties of Stearic Acid Phase Change Microcapsules [J]. Chem. J. Chinese Universities, 2019, 40(10): 2149. |
[13] | WANG Meilin, LIU Yudong, LIU Xiaoli, LI Zhiying, LIU Fengqi. Nonisothermal Crystallization Kinetics of ABS/PET/PETG Alloy† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1290. |
[14] | HAN Na, WANG Xiufang, QU Tingsi, QIAN Yongqiang, LU Yahong. Preparation and Properties of Cellulose Benzoate and Preliminary Exploration About Cellulose Benzoate-g-polyoxyethylene(2) Hexadecyl Ether† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1099. |
[15] | ZHANG Long, HOU Jieqiong, QIU Hu, DUAN Wenjing, WANG Xiaorui, WAN Xiaona, DU Xueyan. Fabrication and Microwave Absorption Performances of EG-PANI-Fe3O4 Composites† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||