Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (8): 20230063.doi: 10.7503/cjcu20230063
• Physical Chemistry • Previous Articles Next Articles
XIONG Wenpeng1,2, CHU Yueying1(), WANG Qiang1(
), XU Jun1, DENG Feng1(
)
Received:
2023-02-17
Online:
2023-08-10
Published:
2023-04-12
Contact:
CHU Yueying
E-mail:chuyueying@wipm.ac.cn;qiangwang@wipm.ac.cn;dengf@wipm.ac.cn
Supported by:
CLC Number:
TrendMD:
XIONG Wenpeng, CHU Yueying, WANG Qiang, XU Jun, DENG Feng. Theoretical Calculation of Relationship Between Zeolite Confinement Effect and Adsorbed 2-13C-acetone 13C Chemical Shift[J]. Chem. J. Chinese Universities, 2023, 44(8): 20230063.
Bare zeolite | Acetone adsorption | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster model | QH1/|e| | rO1—H1/nm | ∠Al1⁃O1⁃Si1/(°) | DPE/ (kJ·mol‒1) | rO1—H1/nm | rO2—H1/nm | rC1—O2/nm | ∠Al1⁃O1⁃Si1/(°) | δ(13C) | ∆Eads/ (kJ·mol‒1) |
12T | 0.556 | 0.0963 | 134.1 | 1256.5 | 0.1020 | 0.1540 | 0.1220 | 131.6 | 218 | -75.7 |
48T | 0.557 | 0.0962 | 132.7 | 1230.1 | 0.1021 | 0.1540 | 0.1220 | 131.1 | 219 | -86.6 |
60T | 0.566 | 0.0961 | 126.6 | 1200.8 | 0.1031 | 0.1495 | 0.1222 | 123.0 | 220 | -100.0 |
88T | 0.568 | 0.0962 | 124.5 | 1200.0 | 0.1041 | 0.1476 | 0.1225 | 120.0 | 223 | -122.2 |
Table 1 Deprotonation energy(DPE), nature charge for H1, O1—H1 bond length, Al1-O1-Si1 angle of isolated Brønsted acid site models and the adsorption energy, 13C chemical shift, the main geometry parameters of acetone adsorption complexes on 12T, 48T, 60T and 88T H-ZSM-5 zeolite models
Bare zeolite | Acetone adsorption | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster model | QH1/|e| | rO1—H1/nm | ∠Al1⁃O1⁃Si1/(°) | DPE/ (kJ·mol‒1) | rO1—H1/nm | rO2—H1/nm | rC1—O2/nm | ∠Al1⁃O1⁃Si1/(°) | δ(13C) | ∆Eads/ (kJ·mol‒1) |
12T | 0.556 | 0.0963 | 134.1 | 1256.5 | 0.1020 | 0.1540 | 0.1220 | 131.6 | 218 | -75.7 |
48T | 0.557 | 0.0962 | 132.7 | 1230.1 | 0.1021 | 0.1540 | 0.1220 | 131.1 | 219 | -86.6 |
60T | 0.566 | 0.0961 | 126.6 | 1200.8 | 0.1031 | 0.1495 | 0.1222 | 123.0 | 220 | -100.0 |
88T | 0.568 | 0.0962 | 124.5 | 1200.0 | 0.1041 | 0.1476 | 0.1225 | 120.0 | 223 | -122.2 |
Bare zeolite | Acetone adsorption | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zeolite | Di /nm | QH1/|e| | rO1—H1/nm | ∠Al1⁃O1⁃Si1/(°) | DPE/ (kJ·mol‒1) | rO1—H1/nm | rO2—H1/nm | rC1-O2/nm | ∠Al1⁃O1⁃Si1/(°) | δ(13C) | ∆Eads/ (kJ·mol‒1) |
H⁃ZSM⁃5 | 0.630 | 0.568 | 0.0962 | 124.5 | 1200.0 | 0.1041 | 0.1476 | 0.1225 | 120.0 | 223 | -122.2 |
H⁃ZSM⁃12 | 0.602 | 0.560 | 0.0964 | 123.3 | 1183.2 | 0.1078 | 0.1372 | 0.1230 | 123.0 | 229 | -136.4 |
H⁃ZSM⁃22 | 0.565 | 0.566 | 0.0966 | 119.4 | 1181.6 | 0.1082 | 0.1334 | 0.1231 | 122.0 | 234 | -151.5 |
Table 2 Deprotonation energy(DPE), nature charge for H1, O1—H1 bond length, Al1-O1-Si1 angle of isolated Brønsted acid sites models and the adsorption energy, 13C chemical shift, the main geometry parameters of acetone adsorption complexes on 88T H-ZSM-5, 66T H-ZSM-12 and 66T H-ZSM-22 zeolite models
Bare zeolite | Acetone adsorption | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zeolite | Di /nm | QH1/|e| | rO1—H1/nm | ∠Al1⁃O1⁃Si1/(°) | DPE/ (kJ·mol‒1) | rO1—H1/nm | rO2—H1/nm | rC1-O2/nm | ∠Al1⁃O1⁃Si1/(°) | δ(13C) | ∆Eads/ (kJ·mol‒1) |
H⁃ZSM⁃5 | 0.630 | 0.568 | 0.0962 | 124.5 | 1200.0 | 0.1041 | 0.1476 | 0.1225 | 120.0 | 223 | -122.2 |
H⁃ZSM⁃12 | 0.602 | 0.560 | 0.0964 | 123.3 | 1183.2 | 0.1078 | 0.1372 | 0.1230 | 123.0 | 229 | -136.4 |
H⁃ZSM⁃22 | 0.565 | 0.566 | 0.0966 | 119.4 | 1181.6 | 0.1082 | 0.1334 | 0.1231 | 122.0 | 234 | -151.5 |
1 | Weitkamp J., Traa Y., Catal. Today, 1999, 49(1—3), 193—199 |
2 | Chatterjee A., Bhattacharya D., Chatterjee M., Iwasaki T., Microporous Mesoporous Mater., 1999, 32(1/2), 189—198 |
3 | Arata K., Matsuhashi H., Hino M., Nakamura H., Catal. Today, 2003, 81(1), 17—30 |
4 | Svelle S., Kolboe S., Swang O., J. Phys. Chem. B, 2004, 108(9), 2953—2962 |
5 | Macht J., Janik M. J., Neurock M., Iglesia E., J. Am. Chem. Soc., 2008, 130(31), 10369—10379 |
6 | Fang H. J., Zheng A. M., Chu Y. Y., Deng F., J. Phys. Chem. C, 2010, 114(29), 12711—12718 |
7 | Zheng A. M., Zhang H. L., Lu X., Liu S., Deng F., J. Phys. Chem. B, 2008, 112(15), 4496—4505 |
8 | Xu T., Munson E. J., Haw J. F., J. Am. Chem. Soc., 1994, 116(5), 1962—1972 |
9 | Biaglow A. I., Gorte R. J., Kokotailo G. T., White D., J. Catal., 1994, 148(2), 779—786 |
10 | Song W., Nicholas J. B., Haw J. F., J. Phys. Chem. B, 2001, 105(19), 4317—4323 |
11 | Zheng A. M., Zhang H. L., Chen L., Yue Y., Ye C. H., Deng F., J. Phys. Chem. B, 2007, 111(12), 3085—3089 |
12 | Zheng A. M., Huang S. J., Chen W. H., Wu P. H., Zhang H. L., Lee H. K., De Ménorval L. C., Deng F., Liu S. B., J. Phys. Chem. A, 2008, 112(32), 7349—7356 |
13 | Chu Y. Y., Yu Z. W., Zheng A. M., Fang H. J., Zhang H. L., Huang S. J., Liu S. B., Deng F., J. Phys. Chem. C, 2011, 115(15), 7660—7667 |
14 | Chu Y. Y., Li G. C., Huang L., Yi X. F., Xia H. Q., Zheng A. M., Deng F., Catal. Sci. Technol., 2017, 7(12), 2512—2523 |
15 | Chu Y. Y., Sun X. Y., Yi X. F., Ding L. H., Zheng A. M., Deng F., Catal. Sci. Technol., 2015, 5(7), 3507—3517 |
16 | Boronat M., MartíNez⁃SáNchez C., Law D., Corma A., J. Am. Chem. Soc., 2008, 130(48), 16316—16323 |
17 | Chu Y. Y., Lo A. Y., Wang C., Deng F., J. Phys. Chem. C, 2019, 123(25), 15503—15512 |
18 | Chen Q. T., Liu J., Yang B., Nat. Commun., 2021, 12(1), 3725 |
19 | Wang C., Chu Y. Y., Zheng A. M., Xu J., Wang Q., Gao P., Qi G. D., Gong Y. J., Deng F., Chem. Eur. J., 2014, 20(39), 12432—12443 |
20 | Wang C., Chu Y., Xu J., Wang Q., Qi G., Gao P., Zhou X., Deng F., Angew. Chem. Int. Ed., 2018, 57(32), 10197—10201 |
21 | Wang C., Hu M., Chu Y. Y., Zhou X., Wang Q., Qi G. D., Li S. H., Xu J., Deng F., Angew. Chem. Int. Ed., 2020, 59(18), 7198—7202 |
22 | Foster M. D., Rivin I., Treacy M. M. J., Friedrichs O. D., Microporous Mesoporous Mater., 2006, 90(1—3), 32—38 |
23 | Treacy M. M. J., Foster M. D., Microporous Mesoporous Mater., 2009, 118(1—3), 106—114 |
24 | Chai J. D., Head⁃Gordon M., Phys. Chem. Chem. Phys., 2008, 10(44), 6615—6620 |
25 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 09, Rev. B.01, Gaussian Inc., Wallingford CT, 2010 |
26 | Liu W., Hong G., Dai D., Li L., Dolg M., Theor. Chem. Acc., 1997, 96(2), 75—83 |
27 | Zhang Y., Suo B., Wang Z., Zhang N., Li Z., Lei Y., Zou W., Gao J., Peng D., Pu Z., J. Chem. Phys., 2020, 152(6), 064113 |
28 | Liu W., Wang F., Li L., J. Theor. Comput. Chem., 2003, 2(2), 257—272 |
29 | Liu W., Wang F., Li L., Recent Advances in Relativistic Molecular Theory, World Scientific Publishing, Tokyo, 2004, 257—282 |
30 | Chu Y. Y., Han B., Fang H. J., Zheng A. M., Deng F., Microporous Mesoporous Mater., 2012, 151(15), 241—249 |
31 | Chu Y. Y., Han B., Zheng A. M., Deng F., J. Phys. Chem. C, 2012, 116(23), 12687—12695 |
32 | Boronat M., Corma A., ACS Catal., 2019, 9(2), 1539—1548 |
[1] | YANG Yingnan, SUN Qiming. Synthesis of EAB Zeolite and Its Application in Methanol-to-olefin Reaction [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230119. |
[2] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[3] | LI Zhiguang, QI Guodong, XU Jun, DENG Feng. Role of Catalyst Acidity in Glucose Conversion over Sn-Al-β Zeolite as Studied by Solid-state NMR [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220138. |
[4] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[5] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[6] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[7] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[8] | WEI Lina, PENG Li, ZHU Feng, GU Pengfei, GU Xuehong. Preparation of Au-CeZr/FAU Catalytic Membranes for Preferential Oxidation of CO in H2-rich Stream [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220175. |
[9] | LI Yichuan, ZHU Guofu, WANG Yu, CHAI Yongming, LIU Chenguang, HE Shengbao. Effects of Substrate Surface Properties and Precursor Chemical Environment on In⁃situ Oriented Construction of Titanium Silicalite Zeolite Membranes [J]. Chem. J. Chinese Universities, 2021, 42(9): 2934. |
[10] | LUO Qiangqiang, JIN Shaoqing, SUN Hongmin, YANG Weimin. Post-synthesis of Ti-MWW Zeolite via Titanium Incorporation in Liquid Acid Solution [J]. Chem. J. Chinese Universities, 2021, 42(9): 2742. |
[11] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[12] | WANG Lei, SUN Tantan, YAN Nana, MA Chao, LIU Xiaona, TIAN Peng, GUO Peng, LIU Zhongmin. Exploring Organic Structure-directing Agents Used for SAPO-34 to Synthesize SSZ-13 [J]. Chem. J. Chinese Universities, 2021, 42(6): 1716. |
[13] | LI Jian, YU Mingming, SUN Yuan, FENG Wenhua, FENG Zhaochi, WU Jianfeng. Effect of Aqueous Solution pH on the Oxidation of Methane to Methanol at Low Temperature [J]. Chem. J. Chinese Universities, 2021, 42(3): 776. |
[14] | WANG Juan, WANG Linying, ZHU Dali, CUI Wenhao, WANG Yifeng, TIAN Peng, LIU Zhongmin. Progress in Direct Synthesis of High Silica Zeolite Y [J]. Chem. J. Chinese Universities, 2021, 42(1): 1. |
[15] | WEN Jiali, ZHANG Junhao, JIANG Jiuxing. Extra-large Pore Zeolites: a Ten-year Updated Review [J]. Chem. J. Chinese Universities, 2021, 42(1): 101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||