Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (1): 101.doi: 10.7503/cjcu20200410
Special Issue: 分子筛功能材料 2021年,42卷,第1期
• Review • Previous Articles Next Articles
WEN Jiali, ZHANG Junhao, JIANG Jiuxing()
Received:
2020-07-01
Online:
2021-01-10
Published:
2021-01-12
Contact:
JIANG Jiuxing
E-mail:jiangjiux@mail.sysu.edu.cn
Supported by:
CLC Number:
TrendMD:
WEN Jiali, ZHANG Junhao, JIANG Jiuxing. Extra-large Pore Zeolites: a Ten-year Updated Review[J]. Chem. J. Chinese Universities, 2021, 42(1): 101.
Structure code | Type of material | Finding year | Channel dimension | Framework composition | Framework density/(T?atom/nm3) | OSDA | Ref. |
---|---|---|---|---|---|---|---|
VFI | VPI?5 | 1988 | 1D 18?ring | Al, P | 14.5 | 1?1,1?2 | [ |
AET | AlPO?8 | 1990 | 1D 14?ring | Al, P | 18.2 | 1?2 | [ |
?CLO | Cloverite | 1991 | 3D 20?ring | Ga, P | 11.1 | 1?3 | [ |
DON | UTD?1 | 1996 | 1D 14?ring | Si | 17.1 | 1?4 | [ |
CFI | CIT?5 | 1997 | 1D 14?ring | Si | 16.8 | 1?5 | [ |
SFH | SSZ?53 | 2003 | 1D 14?ring | B, Si | 16.5 | 1?6 | [ |
SFN | SSZ?59 | 2003 | 1D 14?ring | B, Si | 16.6 | 1?7 | [ |
OSO | OSB?1 | 2001 | 3D 14×8×8?ring | Be, Si | 13.3 | K+ | [ |
ETR | ECR?34 | 2003 | 3D 18×8×8?ring | Ga(Al), Si | 15.4 | 1?8 | [ |
UTL | IM?12 or ITQ?15 | 2004 | 2D 14×12?ring | Ge, Si | 15.6 | 1?9,1?10 | [ |
ITT | ITQ?33 | 2006 | 3D 18×10×10?ring | Ge, Si | 12.3 | 1?11 | [ |
?ITV | ITQ?37 | 2009 | 3D 30?ring | Ge, Si | 10.3 | 1?12 | [ |
?IRY | ITQ?40 | 2010 | 3D 16×15×15?ring | Ge, Si | 11.1 | 1?13 | [ |
IRR | ITQ?44 | 2010 | 3D 18×12×12?ring | Ge, Si | 11.8 | 1?14 | [ |
ITQ?43 | 2011 | 3D 28×12×12?ring | Ge, Si | 11.4 | 1?14 | [ | |
IFO | ITQ?51 | 2013 | 1D 16?ring | Al, P | 17.3 | 1?15 | [ |
NUD?1 | 2014 | 3D 18×12×10?ring | Ge, Si | 11.8 | 1?16 | [ | |
IPC?7 | 2014 | 3D 14×12×10?ring | Ge, Si | — | — | [ | |
*?SSO | SSZ?61 | 2014 | 1D 18?ring | Si | 16.7 | 1?17 | [ |
*?EWT | EMM?23 | 2014 | 3D 21×10?ring | Si | 14.5 | 1?18 | [ |
?IFT | ITQ?53 | 2015 | 3D 14×14×14?ring | Ge, Si | 11.6 | 1?19 | [ |
?IFU | ITQ?54 | 2015 | 3D 20×14×12?ring | Ge, Si | 12.1 | 1?20 | [ |
GeZA | 2015 | 3D 15×14×12?ring | Ge, Si | 12.0 | 1?21 | [ | |
*?SVY | SSZ?70 | 2017 | 2D 14×10?ring | Si | 16.3 | 1?22 | [ |
?SYT | SYSU?3 | 2018 | 3D 24×8×8?ring | Ge, Si | 12.2 | 1?23 | [ |
ECNU?9 | 2018 | 2D 14×12?ring | Al, Si | 16.0 | — | [ | |
NUD?6 | 2020 | 3D 16×8×8?ring | Si | 12.0 | 24 | [ | |
IDM?1 | 2020 | Si | 25 | [ |
Table 1 List of ELP zeolites
Structure code | Type of material | Finding year | Channel dimension | Framework composition | Framework density/(T?atom/nm3) | OSDA | Ref. |
---|---|---|---|---|---|---|---|
VFI | VPI?5 | 1988 | 1D 18?ring | Al, P | 14.5 | 1?1,1?2 | [ |
AET | AlPO?8 | 1990 | 1D 14?ring | Al, P | 18.2 | 1?2 | [ |
?CLO | Cloverite | 1991 | 3D 20?ring | Ga, P | 11.1 | 1?3 | [ |
DON | UTD?1 | 1996 | 1D 14?ring | Si | 17.1 | 1?4 | [ |
CFI | CIT?5 | 1997 | 1D 14?ring | Si | 16.8 | 1?5 | [ |
SFH | SSZ?53 | 2003 | 1D 14?ring | B, Si | 16.5 | 1?6 | [ |
SFN | SSZ?59 | 2003 | 1D 14?ring | B, Si | 16.6 | 1?7 | [ |
OSO | OSB?1 | 2001 | 3D 14×8×8?ring | Be, Si | 13.3 | K+ | [ |
ETR | ECR?34 | 2003 | 3D 18×8×8?ring | Ga(Al), Si | 15.4 | 1?8 | [ |
UTL | IM?12 or ITQ?15 | 2004 | 2D 14×12?ring | Ge, Si | 15.6 | 1?9,1?10 | [ |
ITT | ITQ?33 | 2006 | 3D 18×10×10?ring | Ge, Si | 12.3 | 1?11 | [ |
?ITV | ITQ?37 | 2009 | 3D 30?ring | Ge, Si | 10.3 | 1?12 | [ |
?IRY | ITQ?40 | 2010 | 3D 16×15×15?ring | Ge, Si | 11.1 | 1?13 | [ |
IRR | ITQ?44 | 2010 | 3D 18×12×12?ring | Ge, Si | 11.8 | 1?14 | [ |
ITQ?43 | 2011 | 3D 28×12×12?ring | Ge, Si | 11.4 | 1?14 | [ | |
IFO | ITQ?51 | 2013 | 1D 16?ring | Al, P | 17.3 | 1?15 | [ |
NUD?1 | 2014 | 3D 18×12×10?ring | Ge, Si | 11.8 | 1?16 | [ | |
IPC?7 | 2014 | 3D 14×12×10?ring | Ge, Si | — | — | [ | |
*?SSO | SSZ?61 | 2014 | 1D 18?ring | Si | 16.7 | 1?17 | [ |
*?EWT | EMM?23 | 2014 | 3D 21×10?ring | Si | 14.5 | 1?18 | [ |
?IFT | ITQ?53 | 2015 | 3D 14×14×14?ring | Ge, Si | 11.6 | 1?19 | [ |
?IFU | ITQ?54 | 2015 | 3D 20×14×12?ring | Ge, Si | 12.1 | 1?20 | [ |
GeZA | 2015 | 3D 15×14×12?ring | Ge, Si | 12.0 | 1?21 | [ | |
*?SVY | SSZ?70 | 2017 | 2D 14×10?ring | Si | 16.3 | 1?22 | [ |
?SYT | SYSU?3 | 2018 | 3D 24×8×8?ring | Ge, Si | 12.2 | 1?23 | [ |
ECNU?9 | 2018 | 2D 14×12?ring | Al, Si | 16.0 | — | [ | |
NUD?6 | 2020 | 3D 16×8×8?ring | Si | 12.0 | 24 | [ | |
IDM?1 | 2020 | Si | 25 | [ |
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
---|---|---|---|---|---|---|
IM?12 | UTL | |(C11H22N)4(H2O;OH)16|[Ge13.8 Si62.2 O152 ] | 2004 | 3?1 | 14 | [ |
ITQ?15 | [Ge?Si?O]?UTL | 2004 | 3?2 | [ | ||
ITQ?15 | [Ge?Si?O]?UTL | 2011 | 3?3 | [ | ||
UTL?DBU | [Ge?Si?O]?UTL | 2020 | 3?4 | [ | ||
UTL | [Ge?Si?O]?UTL | 2008 | 3?1 | [ | ||
ITQ?44 | IRR | [Si34.3Ge17.7O104]?IRR | 2010 | 3?3 | 18 | [ |
ITQ?44 | [Ge?Si?O]?IRR | 2011 | 3?5 | [ | ||
ITQ?44 | |(C13H22N)17|[Ge100Si200O600F17] | 2015 | 3?6 | [ | ||
TEA?ITQ?44 | |(C8H20N)5.95(OH)2.95|(Si11Ge33.33Al7.67O104F3)H7.67 | 2016 | 3?7 | [ | ||
TPA?ITQ?44 | |(C12H28N)2.60|(Si11.71Ge32.54Al7.75O104F3)H8.16 | 2016 | 3?8 | [ | ||
ITQ?44 | [Ge?Si?O]?IRR | 2019 | 3?8, 3?9 | [ | ||
Cloverite | ?CLO | |(C7H13N)248|8[Ga96P96O372(OH)24]8 | 1991 | 3?10 | 20 | [ |
PKU?12 | |(C9H22N)24(H2O)96|(Si0.45Ge0.55)192O372(OH)24F24 | 2013 | 3?11 | [ | ||
Zn?/Mn?CLO | [Mn/Zn?Ga?P?O]?CLO | 2002 | 3?10 | [ | ||
DNL?1 | |(C6N2H18)104 ?(C6N2H11)80(H2O)910|[Al768P768O2976(OH)192F288 ] | 2010 | 3?12, 3?13 | [ | ||
DNL?1 | [Al?P?O]?CLO | 2015 | 3?14, 3?15 | [ | ||
?CLO | [Al?P?O]?CLO | 2020 | 3?14, 3?15 | [ | ||
MAS?ITQ?43 | — | |(C16H29N2)3.7(H2O)5|[Ge11Si18.7O62.1H5.4F3.7] | 2019 | 3?16 | 28 | [ |
ITQ?43 | [Si0.69Ge0.31O2 ] | 2011 | 3?3 | [ | ||
UTD?1 | DON | |((Cp*)2Co)2 F1.5(OH)0.5|[Si64O128] | 1997 | 3?17 | 14 | [ |
NUD?5 | [C10H14N2O33Si16 ] | 2019 | 3?18 | [ | ||
EMM?23 | ?*EWT | |(C19H40N2)3|[Si64O116(OH)24] | 2014 | 3?20 | 21 | [ |
RZM?3 | |(C14H32N2·6)3.7H2O|[(Na1·8Al1·3Si62·7O140)] | 2019 | 3?21 | [ | ||
ITQ?37 | ?ITV | |(C22N2H40)(H2O) 10.5|[Ge80Si112O400H32F20] | 2009 | 3?22 | 30 | [ |
ITQ?37 | [Ge?Si?O]?ITV | 2012 | 3?23 | [ | ||
MAS?ITQ?37 | |(C16H29N2)20(H2O)30|[Ge80Si112O400H32F20] | 2019 | 3?16 | [ | ||
ITQ?37 | |(C24N6H33F3)8.81 |[Ge96Si96O400H32] | 2016 | 3?24 | [ | ||
NUD?2 | *CTH | |(C12H15N2)(C12H15N2F)1.20 |[Ge4Si28O64F] | 2016 | 3?25 | 14 | [ |
SAZ?1 | [Ge?Si?O]?*CTH | 2017 | 3?26 | [ | ||
CIT?13 | |(C13N2)3.30F2|[Si54.34Ge9.66O128] | 2016 | 3?27, 3?28 | [ | ||
ITQ?33 | ITT | |(C12H30N2)0.07F0.07(H2O)0.37| [Si0.66Al0.04Ge0.30O2.02 ] | 2006 | 3?29 | 18 | [ |
TBA?ITQ?33 | |(C16H36N)2.19|[H2.62(Si24.01Ge20.18Al1.81O92F3)] | 2016 | 3?30 | [ | ||
NUD?1 | — | |(C15N2H15F)7.69(C15N2H15OH)2|[Ge47.81Si50.19O196] | 2014 | 3?31, 3?32 | 18 | [ |
TPA?NUD?1 | |(C12H28N)3.04(OH)0.04|[H11.86(Si20.18Ge16.96Al11.86O98F3)] | 2016 | 3?8 | [ | ||
TBA?NUD?1 | |(C16H36N)1.13| [(Si24.66Ge20.55Al3.78O98F3)H5.65 ] | 2016 | 3?30 | [ | ||
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
VPI?5 | VFI | [Al18P18O72]?VFI | 1988 | 3?31 | 18 | [ |
VPI?5 | [Al?Si?P?O]?VFI | 1989 | 3?32 | [ | ||
VPI?5 | [Al?P?O]?VFI | 2015 | 3?33 | [ | ||
ECNU?5 | *?SVY | [SiO1.986(OH)0.028] | 2015 | 3?34 | 14 | [ |
SSZ?70 | — | 2017 | 3?35 | [ |
Table 2 Alternative synthesis of ELP zeolites
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
---|---|---|---|---|---|---|
IM?12 | UTL | |(C11H22N)4(H2O;OH)16|[Ge13.8 Si62.2 O152 ] | 2004 | 3?1 | 14 | [ |
ITQ?15 | [Ge?Si?O]?UTL | 2004 | 3?2 | [ | ||
ITQ?15 | [Ge?Si?O]?UTL | 2011 | 3?3 | [ | ||
UTL?DBU | [Ge?Si?O]?UTL | 2020 | 3?4 | [ | ||
UTL | [Ge?Si?O]?UTL | 2008 | 3?1 | [ | ||
ITQ?44 | IRR | [Si34.3Ge17.7O104]?IRR | 2010 | 3?3 | 18 | [ |
ITQ?44 | [Ge?Si?O]?IRR | 2011 | 3?5 | [ | ||
ITQ?44 | |(C13H22N)17|[Ge100Si200O600F17] | 2015 | 3?6 | [ | ||
TEA?ITQ?44 | |(C8H20N)5.95(OH)2.95|(Si11Ge33.33Al7.67O104F3)H7.67 | 2016 | 3?7 | [ | ||
TPA?ITQ?44 | |(C12H28N)2.60|(Si11.71Ge32.54Al7.75O104F3)H8.16 | 2016 | 3?8 | [ | ||
ITQ?44 | [Ge?Si?O]?IRR | 2019 | 3?8, 3?9 | [ | ||
Cloverite | ?CLO | |(C7H13N)248|8[Ga96P96O372(OH)24]8 | 1991 | 3?10 | 20 | [ |
PKU?12 | |(C9H22N)24(H2O)96|(Si0.45Ge0.55)192O372(OH)24F24 | 2013 | 3?11 | [ | ||
Zn?/Mn?CLO | [Mn/Zn?Ga?P?O]?CLO | 2002 | 3?10 | [ | ||
DNL?1 | |(C6N2H18)104 ?(C6N2H11)80(H2O)910|[Al768P768O2976(OH)192F288 ] | 2010 | 3?12, 3?13 | [ | ||
DNL?1 | [Al?P?O]?CLO | 2015 | 3?14, 3?15 | [ | ||
?CLO | [Al?P?O]?CLO | 2020 | 3?14, 3?15 | [ | ||
MAS?ITQ?43 | — | |(C16H29N2)3.7(H2O)5|[Ge11Si18.7O62.1H5.4F3.7] | 2019 | 3?16 | 28 | [ |
ITQ?43 | [Si0.69Ge0.31O2 ] | 2011 | 3?3 | [ | ||
UTD?1 | DON | |((Cp*)2Co)2 F1.5(OH)0.5|[Si64O128] | 1997 | 3?17 | 14 | [ |
NUD?5 | [C10H14N2O33Si16 ] | 2019 | 3?18 | [ | ||
EMM?23 | ?*EWT | |(C19H40N2)3|[Si64O116(OH)24] | 2014 | 3?20 | 21 | [ |
RZM?3 | |(C14H32N2·6)3.7H2O|[(Na1·8Al1·3Si62·7O140)] | 2019 | 3?21 | [ | ||
ITQ?37 | ?ITV | |(C22N2H40)(H2O) 10.5|[Ge80Si112O400H32F20] | 2009 | 3?22 | 30 | [ |
ITQ?37 | [Ge?Si?O]?ITV | 2012 | 3?23 | [ | ||
MAS?ITQ?37 | |(C16H29N2)20(H2O)30|[Ge80Si112O400H32F20] | 2019 | 3?16 | [ | ||
ITQ?37 | |(C24N6H33F3)8.81 |[Ge96Si96O400H32] | 2016 | 3?24 | [ | ||
NUD?2 | *CTH | |(C12H15N2)(C12H15N2F)1.20 |[Ge4Si28O64F] | 2016 | 3?25 | 14 | [ |
SAZ?1 | [Ge?Si?O]?*CTH | 2017 | 3?26 | [ | ||
CIT?13 | |(C13N2)3.30F2|[Si54.34Ge9.66O128] | 2016 | 3?27, 3?28 | [ | ||
ITQ?33 | ITT | |(C12H30N2)0.07F0.07(H2O)0.37| [Si0.66Al0.04Ge0.30O2.02 ] | 2006 | 3?29 | 18 | [ |
TBA?ITQ?33 | |(C16H36N)2.19|[H2.62(Si24.01Ge20.18Al1.81O92F3)] | 2016 | 3?30 | [ | ||
NUD?1 | — | |(C15N2H15F)7.69(C15N2H15OH)2|[Ge47.81Si50.19O196] | 2014 | 3?31, 3?32 | 18 | [ |
TPA?NUD?1 | |(C12H28N)3.04(OH)0.04|[H11.86(Si20.18Ge16.96Al11.86O98F3)] | 2016 | 3?8 | [ | ||
TBA?NUD?1 | |(C16H36N)1.13| [(Si24.66Ge20.55Al3.78O98F3)H5.65 ] | 2016 | 3?30 | [ | ||
Name | IZA code | Framework composition | Year | OSDA* | Pore opening | Ref. |
VPI?5 | VFI | [Al18P18O72]?VFI | 1988 | 3?31 | 18 | [ |
VPI?5 | [Al?Si?P?O]?VFI | 1989 | 3?32 | [ | ||
VPI?5 | [Al?P?O]?VFI | 2015 | 3?33 | [ | ||
ECNU?5 | *?SVY | [SiO1.986(OH)0.028] | 2015 | 3?34 | 14 | [ |
SSZ?70 | — | 2017 | 3?35 | [ |
Name(Code) | Original OSDA | Alternative OSDA | ||||
---|---|---|---|---|---|---|
IM?12 (UTL) | 3?1 | 3?2 | 3?3 | 3?4 | ||
ITQ?44 (IRR) | 3?3 | 3?5 | 3?6 | 3?7 | 3?8 | 3?9 |
Cloverite (?CLO) | 3?10 | 3?11 | 3?12 | 3?13 | 3?14 | 3?15 |
ITQ?43 | 3?3 | 3?16 | ||||
UTD?1 (DON) | 3?17 | 3?18 | 3?19 | |||
EMM?23 (?*EWT) | 3?20 | 3?21 | ||||
ITQ?37 (?ITV) | 3?22 | 3?23 | ![]() | 3?16 | ||
CIT?13 (*CTH) | ![]() | ![]() | ![]() | ![]() | ||
ITQ?33 (ITT) | 3?29 | 3?30 | ||||
Name(Code) | Original OSDA | Alternative OSDA | ||||
NUD?1 | 3?31 | 3?32 | 3?8 | 3?30 | ||
VPI?5 | 3?31 | 3?32 | 3?33 | |||
SSZ?70 | 3?34 | 3?35 |
Table 3 Original and alternative OSDAs
Name(Code) | Original OSDA | Alternative OSDA | ||||
---|---|---|---|---|---|---|
IM?12 (UTL) | 3?1 | 3?2 | 3?3 | 3?4 | ||
ITQ?44 (IRR) | 3?3 | 3?5 | 3?6 | 3?7 | 3?8 | 3?9 |
Cloverite (?CLO) | 3?10 | 3?11 | 3?12 | 3?13 | 3?14 | 3?15 |
ITQ?43 | 3?3 | 3?16 | ||||
UTD?1 (DON) | 3?17 | 3?18 | 3?19 | |||
EMM?23 (?*EWT) | 3?20 | 3?21 | ||||
ITQ?37 (?ITV) | 3?22 | 3?23 | ![]() | 3?16 | ||
CIT?13 (*CTH) | ![]() | ![]() | ![]() | ![]() | ||
ITQ?33 (ITT) | 3?29 | 3?30 | ||||
Name(Code) | Original OSDA | Alternative OSDA | ||||
NUD?1 | 3?31 | 3?32 | 3?8 | 3?30 | ||
VPI?5 | 3?31 | 3?32 | 3?33 | |||
SSZ?70 | 3?34 | 3?35 |
Fig.7 Schematic of size expansion of piperidine derivative OSDAs and corresponding ELP zeolite(A) and phase diagram of the OSDAs in small amount of water(B)[7]Copyright 2011, American Chemical Society.
Fig.10 SYSU?3(?SYT) structure built by D4R and rpa?cages(A), connection of 8?ring cage column to form 24?ring main channel(B, C) and 24×8×8?ring channel system of SYSU?3(D)[32]Copyright 2018, Wiley-VCH Verlag GmbH & Co.
Fig.11 ADOR or inverse sigma transformation of UTL zeolite(A), rearrangement of MWW layer to form ECNU?5(B), interlayer expansion of PLS?3 to form ECNU?9(C) and topotactic transformations from CIT?13(D)
46 | Tao S., Li X., Wang X., Wei Y., Jia Y., Ju J., Cheng Y., Wang H., Gong S., Yao X., Gao H., Zhang C., Zang Q., Tian Z., Angew. Chem. Int. Ed., 2020, 59, 3455—3459 |
47 | Zhang C., Li X., Li X., Hu J., Zhu L., Li Y., Jiang J., Wang Z., Yang W., Chem. Commun., 2019, 55, 2753—2756 |
48 | Zi W. W., Gao Z., Zhang J., Lv J. H., Zhao B. X., Jiang Y. F., Du H. B., Chen F. J., Micropor. Mesopor. Mater., 2019, 290, 109654 |
49 | Wang Y., Zhu J., Sun M., Wang L., Yang J., Wu Q., Wang X., Liu C., Sun J., Mu X., Shu X., Micropor. Mesopor. Mater., 2019, 275, 87—94 |
50 | Qian K., Li J., Jiang J., Liang Z., Yu J., Xu R., Micropor. Mesopor. Mater., 2012, 164, 88—92 |
51 | Chen F. J., Gao Z. H., Liang L. L., Zhang J., Du H. B., CrystEngComm, 2016, 18, 2735—2741 |
52 | Gao Z. H., Chen F. J., Xu L., Sun L., Xu Y., Du H. B., Chem. Eur. J., 2016, 22, 14367—14372 |
53 | Firth D. S., Morris S. A., Wheatley P. S., Russell S. E., Slawin A. M. Z., Dawson D. M., Mayoral A., Opanasenko M., Položij M., Čejka J., Nachtigall P., Morris R. E., Chem. Mater., 2017, 29, 5605—5611 |
54 | Kang J. H., Xie D., Zones S. I., Smeets S., McCusker L. B., Davis M. E., Chem. Mater.,2016, 28, 6250—6259 |
55 | Derouane E. G., Maistriau L., Gabelica Z., Tuel A., Nagy J. B., Von Ballmoos R., App. Catal.,1989, 51, L13—L20 |
56 | Boal B. W., Zones S. I., Davis M. E., Micropor. Mesopor. Mater., 2015, 208, 203—211 |
57 | Xu L., Ji X. Y., Jiang J. G., Han L., Che S. A., Wu P., Chem. Mater., 2015, 27, 7852—7860 |
58 | Archer R. H., Zones S. I., Davis M. E., Micropor. Mesopor. Mater., 2010, 130, 255—265 |
59 | Shvets O. V., Kasian N., Zukal A., Pinkas J., Čejka J., Chem. Mater., 2010, 22, 3482—3495 |
60 | Davis M. E., Lobo R. F., Chem. Mater., 1992, 4, 756—768 |
61 | Nakagawa Y., Lee G. S., Harris T. V., Yuen L. T., Zones S. I., Micropor. Mesopor. Mater., 1998, 22, 69—85 |
62 | Zones S. I., Burton A. W., Lee G. S., Olmstead M. M., J. Am. Chem. Soc., 2007, 129, 9066—9079 |
63 | Balkus K. J., Biscotto M., Gabrielov A. G., Stud. Surf. Sci. Catal., 1997, 105, 415—421 |
64 | Dorset D. L., Weston S. C., Dhingra S. S., J. Phys. Chem. B, 2006, 110, 2045—2050 |
65 | Dorset D. L., Kennedy G. J., Strohmaier K. G., Diaz⁃Cabañas M. J., Rey F., Corma A., J. Am. Chem. Soc., 2006, 128, 8862—8867 |
66 | Wagner P., Nakagawa Y., Lee G. S., Davis M. E., Elomari S., Medrud R. C., Zones S. I., J. Am. Chem. Soc., 2000, 122, 263—273 |
67 | Zones S. I., Nakagawa Y., Lee G. S., Chen C. Y., Yuen L. T., Micropor. Mesopor. Mater., 1998, 21, 199—211 |
68 | Qiu J. Z., Wang L. F., Jiang J. X., Molecules, 2019, 24, 2972—2981 |
69 | Corma A., Rey F., Rius J., Sabater M. J., Valencia S., Nature, 2004, 431, 287—290 |
70 | Martinez⁃Franco R., Cantin A., Moliner M., Corma A., Chem. Mater., 2014, 26, 4346—4353 |
71 | Martinez⁃Franco R., Sun J., Sastre G., Yun Y., Zou X., Moliner M., Corma A., Proc. R. Soc. Math. Phys. Eng. Sci., 2014, 470, 20140107 |
72 | Paris C., Moliner M.; Ed.: GomezHortiguela L., Insights into the Chemistry of Organic Structure⁃Directing Agents in the Synthesis of Zeolitic Materials, Vol. 175, Springer, New York, 2018, 139—177 |
73 | Greg S. L., Stacey I. Z., J. Solid State Chem., 2002, 167, 289—298 |
74 | Wragg D. S., Morris R., Burton A. W., Zones S. I., Ong K., Lee G., Chem. Mater., 2007, 19, 3924—3932 |
75 | Zhang C., Yan Y., Huang Z., Shi H., Zhang C., Cao X., Jiang J., Inorg. Chem. Commun., 2018, 96, 165—169 |
76 | Freyhardt C. C., Tsapatsis M., Lobo R. F., Balkus K. J., Davis M. E., Nature, 1996, 381, 295—298 |
77 | Simancas R., Dari D., Velamazán N., Navarro M., Cantín A., Jordá J., Sastre G., Corma A., Rey F., Science, 2010, 330, 1219—1222 |
78 | Rey F., Simancas J.; Ed.: GomezHortiguela L., Insights into the Chemistry of Organic Structure⁃Directing Agents in the Synthesis of Zeolitic Materials, Vol. 175, Springer, New York, 2018, 103—138 |
79 | Barrer R. M., Villiger H., Z. Kristallogr, 1969, 128, 352—370 |
80 | Smith J. V., Dytrych W. J., Nature, 1984, 309, 607—608 |
81 | Barrer R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978 |
82 | Marler B., Gies H., Eur. J. Mineral., 2012, 24, 405—428 |
83 | Roth W. J., Nachtigall P., Morris R. E., Cejka J., Chem. Rev., 2014, 114, 4807—4837 |
84 | Verheyen E., Joos L., Van Havenbergh K., Breynaert E., Kasian N., Gobechiya E., Houthoofd K., Martineau C., Hinterstein M., Taulelle F., Van Speybroeck V., Waroquier M., Bals S., Van Tendeloo G., Kirschhock C. E. A., Martens J. A., Nat. Mater., 2012, 11, 1059—1064 |
85 | Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E., Chlubna P., Grajciar L., Polozij M., Zukal A., Shvets O., Cejka J., Nat. Chem.,2013, 5, 628—633 |
86 | Morris S. A., Bignami G. P. M., Tian Y., Navarro M., Firth D. S., Cejka J., Wheatley P. S., Dawson D. M., Slawinski W. A., Wragg D. S., Morris R. E., Ashbrook S. E., Nat. Chem.,2017, 9, 1012—1018 |
87 | Mazur M., Wheatley P. S., Navarro M., Roth W. J., Polozij M., Mayoral A., Eliasova P., Nachtigall P., Cejka J., Morris R. E., Nat. Chem.,2016, 8, 58—62 |
88 | Eliasova P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Cejka J., Chem. Soc. Rev., 2015, 44, 7177—7206 |
89 | Liu X., Mao W., Jiang J., Lu X., Peng M., Xu H., Han L., Che S. A., Wu P., Chem. Eur. J., 2019, 25, 4520—4529 |
90 | Liu X., Luo Y., Mao W. T., Jiang J. G., Xu H., Han L., Sun J. L., Wu P., Angew. Chem. Int. Ed., 2020, 59, 1166—1170 |
91 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater.,2020, 32, 2014—2024 |
92 | Kang J. H., Xie D., Zones S. I., Davis M. E., Chem. Mater.,2019, 31, 9777—9787 |
93 | Kubu M., Roth W. J., Greer H. F., Zhou W. Z., Morris R. E., Prech J., Cejka J., Chem. Eur. J., 2013, 19, 13937—13945 |
94 | Kasneryk V., Shamzhy M., Opanasenko M., Wheatley P. S., Morris S. A., Russell S. E., Mayoral A., Trachta M., Čejka J., Morris R. E., Angew. Chem. Int. Ed.,2017, 56, 4324—4327 |
95 | Chlubna⁃Eliasova P., Tian Y., Pinar A. B., Kubu M., Cejka J., Morris R. E., Angew. Chem. Int. Ed.,2014, 53, 7048—7052 |
96 | Shamzhy M. V., Eliasova P., Vitvarova D., Opanasenko M. V., Firth D. S., Morris R. E., Chem. Eur. J.,2016, 22, 17377—17386 |
97 | Yang B. T., Jiang J. G., Xu H., Wu H. H., Wu P., Chin. J. Chem., 2018, 36, 227—232 |
98 | Chen C. Y., Zones S. I., Burton A. W., Elomari S. A., Svelle S., Stud. Surf. Sci. Catal., 2007, 172, 329—334 |
99 | Rodriguez-Fernandez A., Llopis F. J., Martinez C., Moliner M., Corma A., Micropor. Mesopor. Mater., 2018, 267, 35—42 |
100 | Shamzhy M. V., Shvets O. V., Opanasenko M. V., Kurfirtova L., Kubicka D., Cejka J., Chemcatchem,2013, 5, 1891—1898 |
101 | Shi D., Xu L., Chen P., Ma T., Lin C., Wang X., Xu D., Sun J., Chem. Commun.,2019, 55, 1390—1393 |
102 | Sugi Y., Vinu A., J. Nanosci. Nanotech., 2015, 15, 9369—9381 |
103 | Sugi Y., Vinu A., Catalysis Surveys from Asia, 2015, 19, 188—200 |
104 | Prech J., Kubu M., Cejka J., Catalysis Today, 2014, 227, 80—86 |
105 | Wang Y., Wang H., Shao Y., Li T., Tatsumi T., Wang J. G., Catalysts,2019, 9, 257—266 |
106 | Prech J., Vitvarova D., Lupinkova L., Kubu M., Cejka J., Micropor. Mesopor. Mater., 2015, 212, 28—34 |
107 | Liu M., Yokoi T., Kondo J. N., Tatsumi T., Micropor. Mesopor. Mater., 2014, 193, 166—172. |
108 | Fu K., Wang H., Li T., Wang J. G., Mater. Lett.,2019, 244, 10—12 |
1 | Dusselier M., Davis M. E., Chem. Rev., 2018, 118, 5265—5329 |
2 | Yang M., Fan D., Wei Y. X., Tian P., Liu Z. M., Adv. Mater.,2019, 31, 1902181—1902195 |
3 | Zhang L., Duan H., Tan Z., Wu Q., Meng X., Xiao F., Chem. Res. Chinese Universities, 2020, 41(1), 19—27 |
4 | Moliner M., Martinez C., Corma A., Angew. Chem. Int. Ed., 2015, 54, 3560—3579 |
5 | Davis M. E., Saldarriaga C., Montes C., Garces J., Crowdert C., Nature, 1988, 331, 698—699 |
6 | Jiang J., Yu J., Corma A., Angew. Chem. Int. Ed.,2010, 49, 3120—3145 |
7 | Jiang J., Xu Y., Cheng P., Sun Q., Yu J., Corma A., Xu R., Chem. Mater., 2011, 23, 4709—4715 |
8 | Brunner G. O., Meier W. M., Nature, 1989, 337, 146—147 |
9 | Dessau R. M., Schlenker J. L., Higgins J. B., Zeolites, 1990, 10, 522—524 |
10 | Estermann M., McCusker L. B., Baerlocher C., Merrouche A., Kessler H., Nature, 1991, 352, 320—323 |
11 | Lobo R. F., Tsapatsis M., Freyhardt C. C., Khodabandeh S., Wagner P., Chen C. Y., Balkus K. J., Zones S. I., Davis M. E., J. Am. Chem. Soc., 1997, 119, 8474—8484 |
12 | Yoshikawa M., Wagner P., Lovallo M., Tsuji K., Takewaki T., Chen C. Y., Beck L. W., Jones C., Tsapatsis M., Zones S. I., Davis M. E., J. Phys. Chem. B, 1998, 102, 7139—7147 |
13 | Burton A., Elomari S., Chen C. Y., Medrud R., Chan I., Bull L., Kibby C., Harris T., Zones S., Vittoratos E., Chem. Eur. J., 2003, 9, 5737—5748 |
14 | Cheetham A. K., Fjellvg H., Gier T. E., Kongshaug K. O., P. Lillerud K., Stucky G. D., Stud. Surf. Sci. Catal., 2001, 135, 158 |
15 | Strohmaier K. G., Vaughan D. E. W., J. Am. Chem. Soc., 2003, 125, 16035—16039 |
16 | Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science, 2004, 304, 990—992 |
17 | Corma A., Díaz⁃Cabañas M. J., Rey F., Nicolopoulus S., Boulahya K., Chem. Commun., 2004, 1356—1357 |
18 | Corma A., Díaz⁃Cabañas M. J., Jordá J. L., Martínez C., Moliner M., Nature, 2006, 443, 842—845 |
19 | Sun J., Bonneau C., Cantín Á., Corma A., Díaz⁃Cabañas M. J., Moliner M., Zhang D., Li M., Zou X., Nature, 2009, 458, 1154—1157 |
20 | Corma A., Diaz⁃Cabanas M. J., Jiang J., Afeworki M., Dorset D. L., Soled S. L., Strohmaier K. G., Proc. Natl. Acad. Sci., 2010, 107, 13997—14002 |
21 | Jiang J., Jorda J. L., Diaz⁃Cabanas M. J., Yu J., Corma A., Angew. Chem. Int. Ed., 2010, 49, 4986—4988 |
22 | Jiang J., Jorda J. L., Yu J., Baumes L. A., Mugnaioli E., Diaz⁃Cabanas M. J., Kolb U., Corma A., Science, 2011, 333, 1131—1134 |
23 | Martinez⁃Franco R., Moliner M., Yun Y., Sun J., Wan W., Zou X., Corma A., Proc. Natl. Acad. Sci., 2013, 110, 3749—3754 |
24 | Chen F. J., Xu Y., Du H. B., Angew. Chem. Int. Ed., 2014, 53, 9592—9596 |
25 | Wheatley P. S., Chlubna-Eliasova P., Greer H., Zhou W., Seymour V. R., Dawson D. M., Ashbrook S. E., Pinar A. B., McCusker L. B., Opanasenko M., Cejka J., Morris R. E., Angew. Chem. Int. Ed., 2014, 53, 13210—13214 |
26 | Smeets S., Xie D., Baerlocher C., McCusker L. B., Wan W., Zou X., Zones S. I., Angew. Chem. Int. Ed., 2014, 53, 10398—10402 |
27 | Willhammar T., Burton A. W., Yun Y., Sun J., Afeworki M., Strohmaier K. G., Vroman H., Zou X., J. Am. Chem. Soc., 2014, 136, 13570—13573 |
28 | Yun Y., Hernández M., Wan W., Zou X., Jordá J. L., Cantín A., Rey F., Corma A., Chem. Commun., 2015, 51, 7602—7605 |
29 | Jiang J., Yun Y., Zou X., Jorda J. L., Corma A., Chem. Sci., 2015, 6, 480—485 |
30 | Jo C., Lee S., Cho S. J., Ryoo R., Angew. Chem. Int. Ed., 2015, 54, 12805—12808 |
31 | Smeets S., Berkson Z. J., Xie D., Zones S. I., Wan W., Zou X., Hsieh M. F., Chmelka B. F., McCusker L. B., Baerlocher C., J. Am. Chem. Soc., 2017, 139, 16803—16812 |
32 | Zhang C., Kapaca E., Li J., Liu Y., Yi X., Zheng A., Zou X., Jiang J., Yu J., Angew. Chem. Int. Ed., 2018, 57, 6486—6490 |
33 | Yang B., Jiang J.-G., Xu H., Wu H., He M., Wu P., Angew. Chem. Int. Ed., 2018, 57, 9515—9519 |
34 | Zi W. W., Gao Z., Zhang J., Zhao B. X., Cai X. S., Du H. B., Chen F. J., Angew. Chem. Int. Ed., 2020, 59, 3948—3951 |
35 | Villaescusa L. A., Li J., Gao Z., Sun J., Camblor M. A., Angew. Chem. Int. Ed., 2020, 59, 11283—11286 |
36 | Li J., Zhang C., Jiang J., Yu J., Terasaki O., Mayoral A., J. Phys. Chem. L, 2020, 11, 3350—3356 |
37 | Shvets O. V., Zukal A., Kasian N., Žilková N., Čejka J., Chem. Eur. J., 2008, 14, 10134—10140 |
38 | Qian K., Wang Y., Liang Z., Li J., RSC Adv., 2015, 5, 63209—63214 |
39 | Bai R., Sun Q., Wang N., Zou Y., Guo G., Iborra S., Corma A., Yu J., Chem. Mater., 2016, 28, 6455—6458 |
40 | Wang M., Zhang L., Guo K., Lin Y., Meng X., Huang P., Wei Y., Zhang R., Chem. Eur. J., 2019, 14, 621—626 |
41 | Su J., Wang Y., Lin J., Liang J., Sun J., Zou X., Dalton Trans., 2013, 42, 1360—1363 |
42 | Yoshino M., Matsuda M., Miyake M., Solid State Ionics, 2002, 151, 269—274 |
43 | Wei Y., Tian Z., Gies H., Xu R., Ma H., Pei R., Zhang W., Xu Y., Wang L., Li K., Wang B., Wen G., Lin L., Angew. Chem. Int. Ed., 2010, 49, 5367—5370 |
44 | Tao S., Xu R., Li X., Li D., Ma H., Wang D., Xu Y., Tian Z., J. Colloid Interface Sci., 2015, 451, 117—124 |
45 | Lin Y., Zhang L., Guo K., Wang M., Wei Y., Chem. Eur. J., 2018, 24, 2410—2417 |
[1] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[2] | LI Zhiguang, QI Guodong, XU Jun, DENG Feng. Role of Catalyst Acidity in Glucose Conversion over Sn-Al-β Zeolite as Studied by Solid-state NMR [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220138. |
[3] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[4] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[5] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[6] | WEI Lina, PENG Li, ZHU Feng, GU Pengfei, GU Xuehong. Preparation of Au-CeZr/FAU Catalytic Membranes for Preferential Oxidation of CO in H2-rich Stream [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220175. |
[7] | LUO Qiangqiang, JIN Shaoqing, SUN Hongmin, YANG Weimin. Post-synthesis of Ti-MWW Zeolite via Titanium Incorporation in Liquid Acid Solution [J]. Chem. J. Chinese Universities, 2021, 42(9): 2742. |
[8] | LI Yichuan, ZHU Guofu, WANG Yu, CHAI Yongming, LIU Chenguang, HE Shengbao. Effects of Substrate Surface Properties and Precursor Chemical Environment on In⁃situ Oriented Construction of Titanium Silicalite Zeolite Membranes [J]. Chem. J. Chinese Universities, 2021, 42(9): 2934. |
[9] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[10] | WANG Lei, SUN Tantan, YAN Nana, MA Chao, LIU Xiaona, TIAN Peng, GUO Peng, LIU Zhongmin. Exploring Organic Structure-directing Agents Used for SAPO-34 to Synthesize SSZ-13 [J]. Chem. J. Chinese Universities, 2021, 42(6): 1716. |
[11] | LI Jian, YU Mingming, SUN Yuan, FENG Wenhua, FENG Zhaochi, WU Jianfeng. Effect of Aqueous Solution pH on the Oxidation of Methane to Methanol at Low Temperature [J]. Chem. J. Chinese Universities, 2021, 42(3): 776. |
[12] | WANG Juan, WANG Linying, ZHU Dali, CUI Wenhao, WANG Yifeng, TIAN Peng, LIU Zhongmin. Progress in Direct Synthesis of High Silica Zeolite Y [J]. Chem. J. Chinese Universities, 2021, 42(1): 1. |
[13] | WANG Jianyu, ZHANG Qiang, YAN Wenfu, YU Jihong. Roles of Hydroxyl Radicals in Zeolite Synthesis [J]. Chem. J. Chinese Universities, 2021, 42(1): 11. |
[14] | LIU Yi, LIU Yi. Research Progress on Zeolite Layer Preparation via Oriented Seeded Growth [J]. Chem. J. Chinese Universities, 2021, 42(1): 117. |
[15] | QI Guodong, YE Xiaodong, XU Jun, DENG Feng. Progress in NMR Studies of Carbohydrates Conversion on Zeolites [J]. Chem. J. Chinese Universities, 2021, 42(1): 148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||