Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (9): 2934.doi: 10.7503/cjcu20210092
• Physical Chemistry • Previous Articles Next Articles
LI Yichuan1(), ZHU Guofu1, WANG Yu1, CHAI Yongming1, LIU Chenguang1, HE Shengbao1,2
Received:
2021-02-08
Online:
2021-09-10
Published:
2021-09-08
Contact:
LI Yichuan
E-mail:liyichuan@upc.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Yichuan, ZHU Guofu, WANG Yu, CHAI Yongming, LIU Chenguang, HE Shengbao. Effects of Substrate Surface Properties and Precursor Chemical Environment on In⁃situ Oriented Construction of Titanium Silicalite Zeolite Membranes[J]. Chem. J. Chinese Universities, 2021, 42(9): 2934.
No. | Substrate | Modification method | Calcination temperature/℃ | KCPO(0k0) (%) |
---|---|---|---|---|
M01?1 | 304 Stainless steel slides | — | — | 81.86 |
M01?2 | α?Al2O3 slides | — | — | 73.54 |
M02?1 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 450 | 88.87 |
M02?2 | 304 Stainless steel slides | Supported oxide layer by dip?coating SiO2 sol and calcination | 450 | 75.85 |
M03?1 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 300 | 86.14 |
M03?2 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 600 | 87.80 |
M03?3 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 750 | 58.93 |
M03?4 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 900 | 49.70 |
No. | Substrate | Modification method | Calcination temperature/℃ | KCPO(0k0) (%) |
---|---|---|---|---|
M01?1 | 304 Stainless steel slides | — | — | 81.86 |
M01?2 | α?Al2O3 slides | — | — | 73.54 |
M02?1 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 450 | 88.87 |
M02?2 | 304 Stainless steel slides | Supported oxide layer by dip?coating SiO2 sol and calcination | 450 | 75.85 |
M03?1 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 300 | 86.14 |
M03?2 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 600 | 87.80 |
M03?3 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 750 | 58.93 |
M03?4 | 304 Stainless steel slides | Supported oxide layer by dip?coating TiO2 sol and calcination | 900 | 49.70 |
No. | n(TEOS)∶n(TBOT)∶n(TPAOH)∶n(H2O) | Crystallization time and temperature | pH | KCPO(0k0)(%) |
---|---|---|---|---|
M04?1 | 1∶0.010∶0.10∶40 | 72 h/180 ℃ | 10.68 | 77.01 |
M04?2 | 1∶0.010∶0.20∶40 | 72 h/180 ℃ | 11.52 | 74.28 |
M05?1 | 1∶0.010∶0.15∶20 | 72 h/180 ℃ | 11.64 | 77.27 |
M05?2 | 1∶0.010∶0.15∶100 | 72 h/180 ℃ | 10.80 | 80.56 |
M06?1 | 1∶0.010∶0.15∶40 | 72 h/170 ℃ | 11.33 | 84.29 |
M06?2 | 1∶0.010∶0.15∶40 | 72 h/190 ℃ | 11.33 | 85.49 |
M07?1 | 1∶0.010∶0.15∶40 | 12 h/180 ℃ | 11.31 | 87.15 |
M07?2 | 1∶0.010∶0.15∶40 | 96 h/180 ℃ | 11.31 | 85.30 |
No. | n(TEOS)∶n(TBOT)∶n(TPAOH)∶n(H2O) | Crystallization time and temperature | pH | KCPO(0k0)(%) |
---|---|---|---|---|
M04?1 | 1∶0.010∶0.10∶40 | 72 h/180 ℃ | 10.68 | 77.01 |
M04?2 | 1∶0.010∶0.20∶40 | 72 h/180 ℃ | 11.52 | 74.28 |
M05?1 | 1∶0.010∶0.15∶20 | 72 h/180 ℃ | 11.64 | 77.27 |
M05?2 | 1∶0.010∶0.15∶100 | 72 h/180 ℃ | 10.80 | 80.56 |
M06?1 | 1∶0.010∶0.15∶40 | 72 h/170 ℃ | 11.33 | 84.29 |
M06?2 | 1∶0.010∶0.15∶40 | 72 h/190 ℃ | 11.33 | 85.49 |
M07?1 | 1∶0.010∶0.15∶40 | 12 h/180 ℃ | 11.31 | 87.15 |
M07?2 | 1∶0.010∶0.15∶40 | 96 h/180 ℃ | 11.31 | 85.30 |
1 | Lai Z. P., Bonilla G., Diaz I., Nery J. G., Sujaoti K., Amat M. A., Kokkoli E., Terasaki O., Thompson R. W., Tsapatsis M., Vlachos D. G., Science, 2003, 300(5618), 456—460 |
2 | Lai Z. P., Tsapatsis M., Nicolich J. R., Adv. Funct. Mater., 2004, 14(7), 716—729 |
3 | Muller G., Narbeshuber T., Mirth G., Lercher J. A., J. Phys. Chem., 1994, 98(31), 7436—7439 |
4 | Caro J., Noack M., Richter-Mendau J., Marlow F., Petersohn D., Griepentrog M., Kornatowski J., J. Phys. Chem., 1993, 97(51), 13685—13690 |
5 | Kaerger J., J. Phys. Chem., 1991, 95(14), 5558—5560 |
6 | Pham T. C., Kim H. S., Yoon K. B., Science, 2011, 334(6062), 1533—1538 |
7 | Min B., Yang S., Korde A., Kwon Y. H., Jones C. W., Nair S., Angew. Chem. Int. Ed.,2019, 58(24), 8201—8205 |
8 | Lu X. F., Yang Y. W., Zhang J. J., Yan Y. S., Wang Z. B., J. Am. Chem. Soc., 2019, 141(7), 2916—2919 |
9 | Banihashemi F., Ibrahim A. F. M., Babaluo A. A., Lin J. Y. S., Angew. Chem. Int. Ed., 2019, 58(8), 2519—2523 |
10 | Xia D. Y., Peng L., Wu Z. Q., Wang L. Z., Jia Y. M., Zhang C., Gu X. H., Chem. J. Chinese Universities, 2020, 41(12), 2813—2821(夏敦焰, 彭莉, 吴政奇, 王林之, 贾逸民, 张春, 顾学红. 高等学校化学学报, 2020, 41(12), 2813—2821) |
11 | Su M. H., Study on Gas Separation and Shape⁃selective Catalysis Performance of Oriented Zeolite MFI Membrane, Ningxia University, Yinchuan, 2017(苏美慧. 取向MFI型分子筛膜的气体分离与择形催化性能研究, 银川: 宁夏大学, 2017) |
12 | Ji M. L., Liu G. Z., Chen C., Wang L., Zhang X. W., Hu S. L., Ma X. S., Appl. Catal. A: Gen., 2014, 482, 8—15 |
13 | Liu H., Synthesis of Orientation⁃tuned HZSM⁃5 Bi⁃layers and Its Performance in Catalytic Cracking, Tianjin University, Tianjin, 2017(刘红. 双层HZSM⁃5分子筛膜的取向调控及催化裂解性能研究, 天津: 天津大学, 2017) |
14 | Zhang Y. T., Zhang C., Gu X. H., Chem. J. Chinese Universities, 2021, 42(1), 289—298(张玉亭, 张春, 顾学红. 高等学校化学学报, 2021, 42(1), 289—298) |
15 | Li Y. C., Zhu G. F., Wang Y., Chai Y. M., Liu C. G., Micropor. Mesopor. Mater., 2021, 312, 110790 |
16 | Lu X. F., Peng Y., Wang Z. B., Yan Y. S., Micropor. Mesopor. Mater., 2016, 230, 49—57 |
17 | Ji M. L., Liu G. Z., Wang L., Zhang X. W., AIChE. J., 2014, 60(6), 1964—1968 |
18 | Liu H., Liu G. Z., Zhang X. W., Zhao D. D., Wang L., Micropor. Mesopor. Mater., 2017, 244, 164—170 |
19 | Wang Z. X., Yan W. F., Tian D. Y., Cao X. J., Yu J. H., Xu R. R., Acta Phys. Chim. Sin., 2010, 26(7), 2044—2048(王周翔, 闫文付, 田大勇, 曹学静, 于吉红, 徐如人. 物理化学学报, 2010, 26(7), 2044—2048) |
20 | Jiang X., Zhuang Z., Xin F., Micropor. Mesopor. Mater., 2013, 172, 141—145 |
21 | Wang X. D., Zhang B. Q., Liu X. F., Lin J. Y. S., Adv. Mater., 2006, 18(24), 3261—3265 |
22 | Lang L., Liu X. F., Zhang B. Q., Appl. Surf. Sci., 2009, 255(9), 4886—4890 |
23 | Wang Z. B., Yan Y. S., Chem. Mater., 2001, 13(3), 1101—1107 |
24 | Aguado S., Mcleary E. E., Nijmeijer A., Luiten M., Jansen J. C., Kapteijn F., Micropor. Mesopor. Mater., 2009, 120(1/2), 165— 169 |
25 | Hrabanek P., Zikanova A., Drahokoupil J., Prokopova O., Brabec L., Jirka I., Matejkova M., Fila V., de La Iglesia O., Kocirik M., Micropor. Mesopor. Mater., 2013, 174, 154—162 |
26 | Ji M. L., Liu G. Z., Wang L., Zhang X. W., Fuel, 2014, 134, 180—188 |
27 | Fu D. L., Schmidt J. E., Pletcher P., Karakilic P., Ye X., Vis C. M., Bruijnincx P. C. A., Filez M., Mandemaker L. D. B., Winnubst L., Weckhuysen B. M., Angew. Chem. Int. Ed., 2018, 57(38), 12458—12462 |
28 | Ji M. L., Controllable Fabrication and Catalytic Activity of b⁃Oriented HZSM⁃5 Coatings, Tianjin University, Tianjin, 2014(纪镁铃. b轴取向HZSM⁃5催化薄膜的可控制备及性能, 天津: 天津大学, 2014) |
29 | Wang Z. B., Yan Y. S., Micropor. Mesopor. Mater., 2001, 48(1—3), 229—238 |
30 | Li S., Li Z. J., Bozhilov K. N., Chen Z. W., Yan Y. S., J. Am. Chem. Soc., 2004, 126(34), 10732—10737 |
31 | Ji M. L., Liu G. Z., Chen C., Wang L., Zhang X. W., Micropor. Mesopor. Mater., 2012, 155, 117—123 |
32 | Lai R., Yan Y. S., Gavalas G. R., Micropor. Mesopor. Mater., 2000, 37(1/2), 9—19 |
33 | Wu S. C., Luo X., Long Y. F., Zhang L., Xu B. J., Huang R., J. Mater. Eng., 2020, 48(11), 99—107(吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 材料工程, 2020, 48(11), 99—107) |
34 | Xu K., Lv D. Y., Xun C. Y., Zheng Y. F., Ge Z. H., J. Mater. Sci. Eng., 2005, (4), 629—632(许可, 吕德义, 郇昌永, 郑遗凡, 葛忠华. 材料科学与工程学报, 2005, (4), 629—632) |
35 | Wu Q. M., Wang Y. Q., Meng X. J., Xiao F. S., Chem. J. Chinese Universities, 2021, 42(1), 21—28(吴勤明, 王叶青, 孟祥举, 肖丰收. 高等学校化学学报, 2021, 42(1), 21—28) |
36 | Li Y. C., Li Y. X., Zhu G. F., Fan J., Feng X., Chai Y. M., Liu C. G., Ind. Eng. Chem. Res., 2020, 59(20), 9364—9371 |
37 | Peng Y., Lu X. F., Wang Z. B., Yan Y. S., Angew. Chem. Int. Ed., 2015, 54(19), 5709—5712 |
[1] | WANG Longjie, FAN Hongchuan, QIN Yu, CAO Qiue, ZHENG Liyan. Research Progress of Metal-organic Frameworks in the Field of Chemical Separation and Analysis [J]. Chem. J. Chinese Universities, 2021, 42(4): 1167. |
[2] | GUO Zhenhao, GUI Qifeng, ZHANG Bo, REN Shuaizhen, ZHANG Shupeng, LI Xinzhong, REN Tianrui. Application of Polycarboxylate and Naphthalenesulfonate Dispersants in High Concentration Suspension Concentrate† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1278. |
[3] | SHI Suqing, ZHAO Yang, ZHANG Qin, GAO Na, YANG Yang, GONG Yongkuan. Fabrication and Surface Properties of Hydrolyticly Function-switchable Polymer Brush† [J]. Chem. J. Chinese Universities, 2014, 35(5): 1093. |
[4] | QIN Jiaolong, PANG Wenwen, YANG Xiaodong, ZHANG Teng, REN Tianrui. Studies on the Surface Properties of Alcohol Ethoxylate and the Application in Suspension Concentrate† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2182. |
[5] | JIANG Yue, QIN Yuan-Hang, NIU Dong-Fang, ZHANG Xin-Sheng, ZHOU Xing-Gui, SUN Shi-Gang, YUAN Wei-Kang. Effects of Surface Properties and Microstructures of Carbon Nanofibers on Their Electrocatalytic Activity for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2012, 33(05): 1001. |
[6] | NIE Hua-Rong*, JIANG Qing-Song, HAN Zhi-Chao, HE Ai-Hua. Plasma Treated Poly(lactic-co-glycolic acid) Electrospun Nanofibrous Membranes and Their Properties [J]. Chem. J. Chinese Universities, 2010, 31(7): 1451. |
[7] | LUO Jian-Bin*, MA Chen, LIAO Rong, WAN Jing, ZHANG Peng, ZHANG Jie. Surface and Antibacterial Properties of Polyurethane with Fluorinated Bis-ammonium Salts Attached to Hard Segments [J]. Chem. J. Chinese Universities, 2010, 31(6): 1268. |
[8] | WANG Xin-Ping, CHEN Zhi-Fang, NI Hua-Gang, SHEN Zhi-Quan. Surface Properties of Hydroxy-terminated Polystyrenes [J]. Chem. J. Chinese Universities, 2005, 26(9): 1747. |
[9] | DUN Hui-Juan, WEI Yu, SONG Xiu-Qin, CHEN Li-Ren. Surface Properties of Zirconia-based Supports for HPLC [J]. Chem. J. Chinese Universities, 2005, 26(11): 2040. |
[10] | ZHOU YuMing, XU QunHua, HUANG JingYan . Preparation and Surface Properties of Perfluoroalkylethyl Acrylate Copolymer [J]. Chem. J. Chinese Universities, 2001, 22(12): 2126. |
[11] | Ma Keqin, Hu Chunpu, Wang Shirong, Wu Shusen, Ying Shengkang . The Microphase Separation and Surface Proparty of Graft Gopolymers Prepared by Polystyrene Macromer and Butyl Acrylate [J]. Chem. J. Chinese Universities, 1990, 11(4): 402. |
[12] | Gu Dongmin, Yang Changzheng, Yu Xuehai . Study on Surface Property of Polysiloxane-polyurea Block Copolymers and Polysiloxane-Polyurethane Zwitterionomers [J]. Chem. J. Chinese Universities, 1989, 10(3): 280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||