Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (10): 20220175.doi: 10.7503/cjcu20220175
• Article: Inorganic Chemistry • Previous Articles Next Articles
WEI Lina, PENG Li, ZHU Feng, GU Pengfei, GU Xuehong()
Received:
2022-03-22
Online:
2022-10-10
Published:
2022-04-15
Contact:
GU Xuehong
E-mail:xhgu@njtech.edu.cn
Supported by:
CLC Number:
TrendMD:
WEI Lina, PENG Li, ZHU Feng, GU Pengfei, GU Xuehong. Preparation of Au-CeZr/FAU Catalytic Membranes for Preferential Oxidation of CO in H2-rich Stream[J]. Chem. J. Chinese Universities, 2022, 43(10): 20220175.
Catalytic membrane | c[Zr(NO3)4]/(mmol·L?1) | c[Ce(NO3)3]/( mmol·L?1) | Metal mass fraction(%) | ||
---|---|---|---|---|---|
Zr | Ce | Au | |||
Au?Ce0.5Zr1.5/FAU | 1.5 | 0.5 | 0.29 | 0.11 | 1.57 |
Au?Ce1Zr1/FAU | 1.0 | 1.0 | 0.23 | 0.15 | 1.62 |
Au?Ce1.5Zr0.5/FAU | 0.5 | 1.5 | 0.15 | 0.20 | 1.53 |
Au?Ce2/FAU | 0 | 2.0 | — | 0.26 | 1.38 |
Table 1 Effect of Zr(NO3)4 and Ce(NO3)3 concentrations on metal contents in Au-CeZr/FAU catalytic membranes
Catalytic membrane | c[Zr(NO3)4]/(mmol·L?1) | c[Ce(NO3)3]/( mmol·L?1) | Metal mass fraction(%) | ||
---|---|---|---|---|---|
Zr | Ce | Au | |||
Au?Ce0.5Zr1.5/FAU | 1.5 | 0.5 | 0.29 | 0.11 | 1.57 |
Au?Ce1Zr1/FAU | 1.0 | 1.0 | 0.23 | 0.15 | 1.62 |
Au?Ce1.5Zr0.5/FAU | 0.5 | 1.5 | 0.15 | 0.20 | 1.53 |
Au?Ce2/FAU | 0 | 2.0 | — | 0.26 | 1.38 |
Catalyst | Feed composition a (%) | Tmbax /℃ | CO conversion at Tmax(%) | O2 selectivity at Tmax(%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
CO | O2 | H2 | CO2 | H2O | |||||
Au/TiO2 | 1 | 1 | 50 | 0 | 0 | 40—60 | 100 | 80 | [ |
Au/Ti?SBA?15 | 2.3 | 10 | 10 | — | — | 50 | 100 | 97 | [ |
Au/Al2O3 | 1 | 1.4 | 60 | — | 2.8 | 80 | 99.93 | 83 | [ |
Au/CeO2 | 1 | 1 | 40 | — | — | 50—90 | 99 | — | [ |
Au?Ce1Zr1/FAU membrane | 0.67 | 1.33 | 32.67 | — | — | 40—60 | 100 | 100 | This work |
Table 2 Comparison of the catalytic performances of various Au-containing catalysts for CO-PROX reported in the literature
Catalyst | Feed composition a (%) | Tmbax /℃ | CO conversion at Tmax(%) | O2 selectivity at Tmax(%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
CO | O2 | H2 | CO2 | H2O | |||||
Au/TiO2 | 1 | 1 | 50 | 0 | 0 | 40—60 | 100 | 80 | [ |
Au/Ti?SBA?15 | 2.3 | 10 | 10 | — | — | 50 | 100 | 97 | [ |
Au/Al2O3 | 1 | 1.4 | 60 | — | 2.8 | 80 | 99.93 | 83 | [ |
Au/CeO2 | 1 | 1 | 40 | — | — | 50—90 | 99 | — | [ |
Au?Ce1Zr1/FAU membrane | 0.67 | 1.33 | 32.67 | — | — | 40—60 | 100 | 100 | This work |
1 | Fu Q., Saltsburg H., Flytzani⁃Stephanopoulos M., Science, 2003, 301(5635), 935—938 |
2 | Haruta M., Yamada N., Kobayashi T., Iijima S., J. Catal., 1989, 115(2), 301—309 |
3 | Guo L. W., Du P. P., Fu X. P., Ma C., Zeng J., Si R., Huang Y. Y., Jia C. J., Zhang Y. W., Yan C. H., Nat. Commun., 2016, 7(1), 13481 |
4 | Xiang G. H., Zhao S., Wei C. D., Liu C. Y., Fei H. L., Liu Z. G., Yin S. F., Appl. Catal. B, 2021, 296, 120385 |
5 | Qiao B., Liu J., Wang Y. G., Lin Q., Liu X., Wang A., Li J., Zhang T., Liu J., ACS Catal., 2015, 5(11), 6249—6254 |
6 | Wang L., Zhang J., Zhu Y., Xu S., Wang C., Bian C., Meng X., Xiao F. S., ACS Catal., 2017, 7(11), 7461—7465 |
7 | Kang Y. M., WAN B. Z., Appl. Catal. A, 1995, 128(1), 53—60 |
8 | Lin J. N., Chen J. H., Hsiao C. Y., Kang Y. M., Wan B. Z., Appl. Catal. B, 2002, 36(1), 19—29 |
9 | Qi L., Tang C., Zhang L., Yao X., Cao Y., Liu L., Gao F., Dong L., Chen Y., Appl. Catal. B, 2012, 127, 234—245 |
10 | Zhu F., Zhang Y., Gu X., Chen C., Jin W., Ke X., Int. J. Hydrogen Energy, 2016, 41(31), 13513—13520 |
11 | Zhu F., Peng L., Yao X., Zhang Y., Zhang C., Gu X., Energy Technol., 2017, 5(12), 2283—2293 |
12 | Shi Z., Zhang Y., Cai C., Zhang C., Gu X., Ceram. Int., 2015, 41(1), 1333—1339 |
13 | Liu D., Zhang Y., Jiang J., Wang X., Zhang C., Gu X., RSC Adv., 2015, 5(116), 95866—95871 |
14 | Gu X., Dong J., Nenoff T. M., Ind. Eng. Chem. Res., 2005, 44(4), 937—944 |
15 | Peng L., Wang L., Zhu F., Liu J., Yan W., Gu X., Chin. J. Chem. Eng., 2019, 27(10), 2560—2565 |
16 | Kalathil S., Khan M. M., Ansari S. A., Lee J., Cho M. H., Nanoscale, 2013, 5(14), 6323—6326 |
17 | Seo J., Takata T., Nakabayashi M., Hisatomi T., Shibata N., Minegishi T., Domen K., J. Am. Chem. Soc., 2015, 137(40), 12780—12783 |
18 | Liotta L. F., Di Carlo G., Pantaleo G., Venezia A. M., Catal. Today, 2010, 158(1), 56—62 |
19 | Han M., Wang X., Shen Y., Tang C., Li G., Smith Jr R. L., J. Phys. Chem. C, 2010, 114, 793—798 |
20 | Bastl Z., Senkevich A., Spirovova I., Vrtilkova V., Surf. Interface Anal., 2002, 34(1), 477—480 |
21 | Takano I., Isobe S., Sasaki T. A., Baba Y., Appl. Surf. Sci., 1989, 37(1), 25—32 |
22 | Peng Y., Li K., Li J., Appl. Catal. B, 2013, 140, 483—492 |
23 | Yu J., Si Z., Chen L., Wu X., Weng D., Appl. Catal. B, 2015, 163, 223—232 |
24 | Wei Y., Liu J., Zhao Z., Duan A., Jiang G., J. Catal., 2012, 287, 13—29 |
25 | Ma Z., Wu X., Si Z., Weng D., Ma J., Xu T., Appl. Catal. B, 2015, 179, 380—394 |
26 | Liu X., Liu S., Liu Y., Micropor. Mesopor. Mat., 2016, 226, 162—168 |
27 | Zhang Y., Zhan Y., Chen C., Cao Y., Lin X., Zheng Q., Int. J. Hydrogen Energy, 2012, 37(17), 12292—12300 |
28 | Gao X., Jiang Y., Fu Y., Zhong Y., Luo Z., Cen K., Catal. Commun., 2010, 11(5), 465—469 |
29 | Jiang Y., Xing Z., Wang X., Huang S., Wang X., Liu Q., Fuel, 2015, 151, 124—129 |
30 | Zhu H., Qin Z., Shan W., Shen W., Wang J., J. Catal., 2004, 225(2), 267—277 |
31 | Murugan B., Ramaswamy A. V., J. Phys. Chem. C, 2008, 112(51), 20429—20442 |
32 | Zhang F., Zhu X. B., Liu J., Du J. L., Wu H. P., Chen G., J. Mol. Catal., 2021, 35(6), 549—560 |
张飞, 竺新波, 刘进, 杜佳丽, 吴瀚鹏, 陈耿. 分子催化, 2021, 35(6), 549—560 | |
33 | Duan D., Hao C., Shi W., Wang H., Ma C., Song X., Sun Z., Appl. Surf. Sci., 2019, 484, 354—364 |
34 | Wang H. F., Gong X. Q., Guo Y. L., Guo Y., Lu G. Z., Hu P., J. Phys. Chem. C, 2009, 113(23), 10229—10232 |
35 | Yu W. Y., Yang C. P., Lin J. N., Kuo C. N., Wan B. Z., Chem. Commun., 2005,(3), 354—356 |
36 | Ruszel M., Grzybowska B., Łaniecki M., Wójtowski M., Catal. Commun., 2007, 8(8), 1284—1286 |
37 | Saavedra J., Whittaker T., Chen Z., Pursell C. J., Rioux R. M., Chandler B. D., Nat. Chem., 2016, 8(6), 584—589 |
[1] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[2] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[3] | LI Zhiguang, QI Guodong, XU Jun, DENG Feng. Role of Catalyst Acidity in Glucose Conversion over Sn-Al-β Zeolite as Studied by Solid-state NMR [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220138. |
[4] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[5] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[6] | ZHAO Wanjun, LI Xiao, Dang Hui, WANG Yongzhao, ZHAO Yongxiang. Preparation of Supported Pd-Cu Catalyst and Its Preferential Oxidation of CO Under Hydrogen-rich Atmosphere [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210754. |
[7] | LI Yichuan, ZHU Guofu, WANG Yu, CHAI Yongming, LIU Chenguang, HE Shengbao. Effects of Substrate Surface Properties and Precursor Chemical Environment on In⁃situ Oriented Construction of Titanium Silicalite Zeolite Membranes [J]. Chem. J. Chinese Universities, 2021, 42(9): 2934. |
[8] | LUO Qiangqiang, JIN Shaoqing, SUN Hongmin, YANG Weimin. Post-synthesis of Ti-MWW Zeolite via Titanium Incorporation in Liquid Acid Solution [J]. Chem. J. Chinese Universities, 2021, 42(9): 2742. |
[9] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[10] | WANG Lei, SUN Tantan, YAN Nana, MA Chao, LIU Xiaona, TIAN Peng, GUO Peng, LIU Zhongmin. Exploring Organic Structure-directing Agents Used for SAPO-34 to Synthesize SSZ-13 [J]. Chem. J. Chinese Universities, 2021, 42(6): 1716. |
[11] | LI Jian, YU Mingming, SUN Yuan, FENG Wenhua, FENG Zhaochi, WU Jianfeng. Effect of Aqueous Solution pH on the Oxidation of Methane to Methanol at Low Temperature [J]. Chem. J. Chinese Universities, 2021, 42(3): 776. |
[12] | WANG Juan, WANG Linying, ZHU Dali, CUI Wenhao, WANG Yifeng, TIAN Peng, LIU Zhongmin. Progress in Direct Synthesis of High Silica Zeolite Y [J]. Chem. J. Chinese Universities, 2021, 42(1): 1. |
[13] | WEN Jiali, ZHANG Junhao, JIANG Jiuxing. Extra-large Pore Zeolites: a Ten-year Updated Review [J]. Chem. J. Chinese Universities, 2021, 42(1): 101. |
[14] | WANG Jianyu, ZHANG Qiang, YAN Wenfu, YU Jihong. Roles of Hydroxyl Radicals in Zeolite Synthesis [J]. Chem. J. Chinese Universities, 2021, 42(1): 11. |
[15] | LIU Yi, LIU Yi. Research Progress on Zeolite Layer Preparation via Oriented Seeded Growth [J]. Chem. J. Chinese Universities, 2021, 42(1): 117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||