Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220689.doi: 10.7503/cjcu20220689
• Review • Previous Articles
WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang(), MAI Liqiang(
)
Received:
2022-10-31
Online:
2023-01-10
Published:
2022-12-12
Contact:
ZHOU Liang, MAI Liqiang
E-mail:liangzhou@whut.edu.cn;mlq518@whut.edu.cn
Supported by:
CLC Number:
TrendMD:
WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang, MAI Liqiang. Intricate Hollow Structured Materials: Synthesis and Energy Applications[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220689.
Method | Feature | Strength | Weakness | Example |
---|---|---|---|---|
Hard⁃templating | Well controlled size, shell number, shell thickness, etc. | Simple, effective, and straightforward | Complex synthesis process | SiO2, carbon, polyaniline, TiO2, Fe3O4, SnO2, etc. |
Soft⁃templating | Micelles and vesicles as soft templates | Facile and convenient synthesis | Highly sensitive to the synthesis parameters | Especially useful for chemically and thermodynamically unstable materials |
Self⁃templating:ostwald ripening | Depending on material dissolution and re⁃deposition | Relatively simple synthesis | Relatively few examples | Cu2O, TiO2, SnO2, etc. |
Self⁃templating: galva⁃nic replacement | Based on the electronegativity difference of different metals | Rich and well⁃defined morphologies | Limited to metals, especially precious metals | Metal(especially precious metal) |
Self⁃templating: thermal induced hollowing | Depending on thermal treatment⁃induced matter relocation | Simple synthesis process, easy for scale up | Difficulty in delicate control of the structure | Various transition metal oxides, metal sulfides |
Sequential templating | The template with rich precursor acts as "sequential template" multiple times | Well controlled structure, relatively easy synthesis | — | Metal oxides, metal sulfides, metal phosphides, etc. |
Selective etching | The parent materials having “soft regions” and “hard regions” | Precise structure control | Highly dependent on synthetic conditions such as pH | SiO2, organosilica, polymer, carbon, Prussian blue, CoSn(OH)6, ZnSn(OH)6, etc. |
Table 1 Summary of different synthesis methods
Method | Feature | Strength | Weakness | Example |
---|---|---|---|---|
Hard⁃templating | Well controlled size, shell number, shell thickness, etc. | Simple, effective, and straightforward | Complex synthesis process | SiO2, carbon, polyaniline, TiO2, Fe3O4, SnO2, etc. |
Soft⁃templating | Micelles and vesicles as soft templates | Facile and convenient synthesis | Highly sensitive to the synthesis parameters | Especially useful for chemically and thermodynamically unstable materials |
Self⁃templating:ostwald ripening | Depending on material dissolution and re⁃deposition | Relatively simple synthesis | Relatively few examples | Cu2O, TiO2, SnO2, etc. |
Self⁃templating: galva⁃nic replacement | Based on the electronegativity difference of different metals | Rich and well⁃defined morphologies | Limited to metals, especially precious metals | Metal(especially precious metal) |
Self⁃templating: thermal induced hollowing | Depending on thermal treatment⁃induced matter relocation | Simple synthesis process, easy for scale up | Difficulty in delicate control of the structure | Various transition metal oxides, metal sulfides |
Sequential templating | The template with rich precursor acts as "sequential template" multiple times | Well controlled structure, relatively easy synthesis | — | Metal oxides, metal sulfides, metal phosphides, etc. |
Selective etching | The parent materials having “soft regions” and “hard regions” | Precise structure control | Highly dependent on synthetic conditions such as pH | SiO2, organosilica, polymer, carbon, Prussian blue, CoSn(OH)6, ZnSn(OH)6, etc. |
Application | Material | Synthesis method | Advantages | Ref. |
---|---|---|---|---|
Lithium⁃ion battery | Si/CoFe2O4 | Sequential templating | Volume change buffering; reduced ion transport path | [ |
Sodium⁃ion battery | Na3(VOPO4)2F | Soft⁃templating | [ | |
Alkaline battery | NiS2 | Sequential templating | [ | |
Li⁃S battery | Double⁃shell hollow carbon spheres | Hard⁃templating | High S loading, soluble poly⁃ sulfides confinement | [ |
Supercapacitor | Carbon | Hard⁃templating | High specific surface area, more reactive sites, superior stability | [ |
MnO2@Co⁃Ni LDH | Self⁃templating | [ | ||
Co3O4/NiCo2O4 | Self⁃templating | [ | ||
Electrocatalysis | Ni⁃Fe LDH | Self⁃templating | Cascade reaction, high selec⁃ tivity, high catalyst loading | [ |
Mn⁃Co oxyphosphide | Self⁃templating | [ | ||
CoSe2/(NiCo)Se2 | Self⁃templating | [ | ||
Photocatalysis | ZnS⁃CdS | Self⁃templating | Architectural stability, multiple scattering of light, fast mass transfer | [ |
TiO2⁃Cu x O | Sequential templating | [ | ||
TiO2/SrTiO3 | Sequential⁃templating | [ | ||
Dye⁃sensitized solar cells | SiO2/TiO2 | Hard⁃templating | Better light harvesting, fast electron transport, high specific surface area | [ |
TiO2⁃SnO2 | Self⁃templating | [ | ||
ZnO | Sequential templating | [ |
Table 2 Typical intricate hollow structured materials and their application
Application | Material | Synthesis method | Advantages | Ref. |
---|---|---|---|---|
Lithium⁃ion battery | Si/CoFe2O4 | Sequential templating | Volume change buffering; reduced ion transport path | [ |
Sodium⁃ion battery | Na3(VOPO4)2F | Soft⁃templating | [ | |
Alkaline battery | NiS2 | Sequential templating | [ | |
Li⁃S battery | Double⁃shell hollow carbon spheres | Hard⁃templating | High S loading, soluble poly⁃ sulfides confinement | [ |
Supercapacitor | Carbon | Hard⁃templating | High specific surface area, more reactive sites, superior stability | [ |
MnO2@Co⁃Ni LDH | Self⁃templating | [ | ||
Co3O4/NiCo2O4 | Self⁃templating | [ | ||
Electrocatalysis | Ni⁃Fe LDH | Self⁃templating | Cascade reaction, high selec⁃ tivity, high catalyst loading | [ |
Mn⁃Co oxyphosphide | Self⁃templating | [ | ||
CoSe2/(NiCo)Se2 | Self⁃templating | [ | ||
Photocatalysis | ZnS⁃CdS | Self⁃templating | Architectural stability, multiple scattering of light, fast mass transfer | [ |
TiO2⁃Cu x O | Sequential templating | [ | ||
TiO2/SrTiO3 | Sequential⁃templating | [ | ||
Dye⁃sensitized solar cells | SiO2/TiO2 | Hard⁃templating | Better light harvesting, fast electron transport, high specific surface area | [ |
TiO2⁃SnO2 | Self⁃templating | [ | ||
ZnO | Sequential templating | [ |
1 | Wang G., Lu Z. L., Li Y., Li L. H., Ji H. F., Feteira A., Zhou D., Wang D. W., Zhang S. J., Reaney I. M., Chem. Rev., 2021, 121(10), 6124—6172 |
2 | Duffner F., Kronemeyer N., Tubke J., Leker J., Winter M., Schmuch R., Nat. Energy, 2021, 6(2), 123—134 |
3 | Tian Y. S., Zeng G. B., Rutt A., Shi T., Kim H., Wang J. Y., Koettgen J., Sun Y. Z., Ouyang B., Chen T., Lun Z. Y., Rong Z. Q., Persson K., Ceder G., Chem. Rev., 2021, 121(3), 1623—1669 |
4 | Li S. Q., Wang K., Zhang G. F., Li S. N, Xu Y. A., Zhang X. D., Zhang X., Zheng S. H., Sun X. Z., Ma Y. W., Adv. Funct. Mater., 2022, 32(23), 2200796 |
5 | Huang J., Yuan K., Chen Y. W., Adv. Funct. Mater., 2022, 32(4), 2108107 |
6 | Wu Y. C., Wei W., Yu R. H., Xia L. X., Hong X. F., Zhu J. X., Li J. T., Lv L., Chen W., Zhao Y., Zhou L., Mai L. Q., Adv. Funct. Mater., 2022, 32(17), 2110910 |
7 | Ma S., Yuan G. Z., Zhang Y., Yang N., Li Y. J., Chen Q., Energy Environ. Sci., 2022, 15(1), 13—55 |
8 | Ates B., Koytepe S., Ulu A., Gurses C., Thakur V. K., Chem. Rev., 2020, 120(17), 9304—9362 |
9 | Shen R. C., Ren D. D., Ding Y. N., Guan Y. T., Ng Y. H., Zhang P., Li X., Sci. China Mater., 2020, 63(11), 2153—2188 |
10 | Wang B., Ruan T. T., Chen Y., Jin F., Peng L., Zhou Y., Wang D. L., Dou S. X., Energy Storage Mater., 2020, 24, 22—51 |
11 | Xiao M., Wang Z. L., Lyu M. Q., Luo B., Wang S. C., Liu G., Cheng H. M., Wang L. Z., Adv. Mater., 2019, 31(38), 1801369 |
12 | Qi J., Lai X. Y., Wang J. Y., Tang H. J., Ren H., Yang Y., Jin Q., Zhang L. J., Yu R. B., Ma G. H., Su Z. G., Zhao H. J., Wang D., Chem. Soc. Rev., 2015, 44(19), 6749—6773 |
13 | Wang J. Y., Tang H. J., Wang H., Yu R. B., Wang D., Mater. Chem. Front., 2017, 1(3), 414—430 |
14 | Li Z., Song M., Zhu W. Y., Zhuang W. C., Du X. H., Tian L., Coord. Chem. Rev., 2021, 439, 213946 |
15 | Qiu T. J., Gao S., Liang Z. B., Wang D. G., Tabassum H., Zhong R. Q., Zou R. Q., Angew. Chem. Int. Ed., 2021, 60(32), 17314—17336 |
16 | Mohammadian⁃Sarcheshmeh H., Arazi R., Mazloum⁃Ardakani M., Renew. Sust. Energ. Rev., 2020, 134, 110249 |
17 | Zhu M. Y., Tang J. J., Wei W. J., Li S. J., Mater. Chem. Front., 2020, 4(4), 1105—1149 |
18 | Hu W. H., Zheng M. B., Xu B. Y., Wei Y., Zhu W., Li Q., Pang H., J. Mater. Chem. A, 2021, 9(7), 3880—3917 |
19 | Wei Y. Z., Yang N. L., Huang K. K., Wan J. W., You F. F., Yu R. B., Feng S. H., Wang D., Adv. Mater., 2020, 32(44), e2002556 |
20 | Liang J., Kou H. R., Ding S. J., Adv. Funct. Mater., 2020, 31(10), 2007801 |
21 | Bin D. S., Xu Y. S., Guo S. J., Sun Y. G., Cao A. M., Wan L. J., Acc. Chem. Res., 2021, 54(1), 221—231 |
22 | Xu W. J., Qing X., Liu S. L., Yang D. L., Dong X. C., Zhang Y. W., Small, 2022, 18(15), e2106511 |
23 | Zhao D., Yang N., Xu L., Du J., Yang Y., Wang D., Nano Res., 2022, 15(2), 739—757 |
24 | Yu L., Hu H., Wu H. B., Lou X. W., Adv. Mater., 2017, 29(15), 1604563 |
25 | Sun Y. G., Cao A. M., Chin. Sci. Bull., 2019, 64(34), 3607—3622 |
孙勇刚, 曹安民. 科学通报, 2019, 64(34), 3607—3622 | |
26 | Bai S. Y., Wang X. Y., Liu Q. L., Sun J. H., Liu J., Chin. Sci. Bull., 2019, 64(34), 3562—3576 |
白诗扬, 王昕尧, 刘庆隆, 孙继红, 刘健. 科学通报, 2019, 64(34), 3562—3576 | |
27 | Caruso F., Caruso R. A., Möhwald H., Science, 1998, 282(5391), 1111—1114 |
28 | Zhou L., Zhuang Z. C., Zhao H. H., Lin M. T., Zhao D. Y., Mai L. Q., Adv. Mater., 2017, 29(20), 1602914 |
29 | Xie F. X., Zhang L., Ye C., Jaroniec M., Qiao S. Z., Adv. Mater., 2019, 31(38), e1800492 |
30 | Wang Y. Z., Yang M., Ding Y. M., Li N. W., Yu L., Adv. Funct. Mater., 2021, 32(6), 2108681 |
31 | Stöber W., Fink A., Bohn E., J. Colloid Interf. Sci., 1968, 26(1), 62—69 |
32 | Zhang J., Guo Z. Q., Li Y., Pan S. H., Chen X. L., Xu J. Z., J. Mol. Liq., 2016, 223, 534—540 |
33 | Tong Z. W., Yang D., Li Z., Nan Y. H., Ding F., Shen Y. C., Jiang Z. Y., ACS Nano, 2017, 11(1), 1103—1112 |
34 | Mao D., Wan J. W., Wang J. Y., Wang D., Adv. Mater., 2019, 31(38), e1802874 |
35 | Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D., Angew. Chem. Int. Ed., 2013, 52(25), 6417—6420 |
36 | Yang X. D., Li Y. L., Zhang P. X., Sun L. N., Ren X. Z., Mi H. W., Carbon, 2020, 157, 70—79 |
37 | Lu A. H., Sun T., Li W. C., Sun Q., Han F., Liu D. H., Guo Y., Angew. Chem. Int. Ed., 2011, 50(49), 11765—11768 |
38 | Li X. C., Wang L., Shi J. H., Du N. X., He G. H., ACS Appl. Mater. Interfaces, 2016, 8(27), 17276—17283 |
39 | Lai X. Y., Li J., Korgel B. A., Dong Z. H., Li Z. M., Su F. B., Du J. A., Wang D., Angew. Chem. Int. Ed., 2011, 50(12), 2738—2741 |
40 | Peng S. J., Gong F., Li L. L., Yu D. S., Ji D. X., Zhang T. R., Hu Z., Zhang Z. Q., Chou S. L., Du Y. H., Ramakrishna S., J. Am. Chem. Soc., 2018, 140(42), 13644—13653 |
41 | Zhu S., Zhao N. Q., Li J. J., Deng X. Y., Sha J. W., He C. N., Nano Today, 2019, 29, 100796 |
42 | Doustkhah E., Hassandoost R., Khataee A., Luque R., Assadi M. H. N., Chem. Soc. Rev., 2021, 50(5), 2927—2953 |
43 | Jin Q. Q., Zhang C. Y., Wang W. N., Chen B. J., Ruan J., Qian H. S., Chem. Rec., 2020, 20(8), 882—892 |
44 | Zhang H. W., Yu M. H., Song H., Noonan O., Zhang J., Yang Y. N., Zhou L., Yu C. Z., Chem. Mater., 2015, 27(18), 6297—6304 |
45 | Wu H. J., Wu G. L., Ren Y. Y., Li X. H., Wang L. D., Chem. Eur. J., 2016, 22(26), 8864—8871 |
46 | Huang C. C., Huang W., Yeh C. S., Biomaterials, 2011, 32(2), 556—564 |
47 | Hwang S. H., Yun J., Jang J., Adv. Funct. Mater., 2014, 24(48), 7619—7626 |
48 | Lou X. W., Yuan C. L., Archer L. A., Small, 2007, 3(2), 261—265 |
49 | Lou X. W., Yuan C. L., Archer L. A., Adv. Mater., 2007, 19(20), 3328—3332 |
50 | Yang M., Ma J. , Zhang C. L., Yang Z. Z., Lu Y. F., Angew. Chem. Int. Ed., 2005, 44(41), 6727—6730 |
51 | Tian H., Liang J., Liu J., Adv. Mater., 2019, 31(50), e1903886 |
52 | Tan H. B, Li Y. Q., Kim J., Takei T., Wang Z. L., Xu X. T., Wang J., Bando Y., Kang Y. M., Tang J., Yamauchi Y., Adv. Sci., 2018, 5(7), 1800120 |
53 | Thompson B. R., Horozov T. S., Stoyanov S. D., Paunov V. N., J. Mater. Chem. A, 2019, 7(14), 8030—8049 |
54 | Xu H. L., Wang W. Z., Angew. Chem. Int. Ed., 2007, 46(9), 1489—1492 |
55 | Sun B., Zeng H. C., Part. Part. Syst. Char., 2020, 37(6), 2000101 |
56 | Lee J., Kim S. M., Lee I. S., Nano Today, 2014, 9(5), 631—667 |
57 | Yec C. C., Zeng H. C., J. Mater. Chem. A, 2014, 2(14), 4843—4851 |
58 | Anderson B. D., Tracy J. B., Nanoscale, 2014, 6(21), 12195—12216 |
59 | Weng W. S., Lin J., Du Y. C., Ge X. F., Zhou X. S., Bao J. C., J. Mater. Chem. A, 2018, 6(22), 10168—10175 |
60 | Yang H. G., Zeng H. C., J. Phys. Chem. B, 2004, 108(11), 3492—3495 |
61 | Zhang L., Wang H., J. Phys. Chem. C, 2011, 115(38), 18479—18485 |
62 | Yec C. C., Zeng H. C., Chem. Mater., 2012, 24(10), 1917—1929 |
63 | Zhuang C. Q., Qi H. Y., Cheng X., Chen G., Gao C. L., Wang L. H., Sun S. R., Zou J., Han X. D., Angew. Chem. Int. Ed., 2019, 58(51), 18627—18633 |
64 | Sun Y. G., Mayers B. T., Xia Y. N., Nano Lett., 2002, 2(5), 481—485 |
65 | Sun Y. G., Xia Y. N., Adv. Mater., 2004, 16(3), 264—268 |
66 | Sun Y. G., Wiley B., Li Z. Y., Xia Y. N., J. Am. Chem. Soc., 2004, 126(30), 9399—9406 |
67 | González E., Arbiol J., Puntes V. F., Science, 2011, 334(6061), 1377—1380 |
68 | Guan J. G., Mou F. Z., Sun Z. G., Shi W. D., Chem. Commun., 2010, 46(35), 6605—6607 |
69 | Cho W., Lee Y. H., Lee H. J., Oh M., Adv. Mater., 2011, 23(15), 1720—1723 |
70 | Guo W. X., Sun W. W., Wang Y., ACS Nano, 2015, 9(11), 11462—11471 |
71 | Guo W. X., Sun W. W., Lv L. P., Kong S. F., Wang Y., ACS Nano, 2017, 11(4), 4198—4205 |
72 | Zhou L., Zhao D. Y., Lou X. W., Adv. Mater., 2012, 24(6), 745—748 |
73 | Zhang G. Q., Yu L., Wu H. B., Hoster H. E., Lou X. W., Adv. Mater., 2012, 24(34), 4609—4613 |
74 | Shen L. F., Yu L., Yu X. Y., Zhang X. G., Lou X. W., Angew. Chem. Int. Ed., 2015, 54(6), 1868—1872 |
75 | Lu Y., Nai J. W., Lou X. W., Angew. Chem. Int. Ed., 2018, 57(11), 2899—2903 |
76 | Arpagaus C., Collenberg A., Rutti D., Assadpour E., Jafari S. M., Int. J. Pharm., 2018, 546(1/2), 194—214 |
77 | Singh A., Van Den Mooter G., Adv. Drug Deliv. Rev., 2016, 100, 27—50 |
78 | Zhou L., Xu H. Y., Zhang H. W., Yang J., Hartono S. B., Qian K., Zou J., Yu C. Z., Chem. Commun., 2013, 49(77), 8695—8697 |
79 | Padashbarmchi Z., Hamidian A. H., Zhang H. W., Zhou L., Khorasani N., Kazemzad M., Yu C. Z., RSC Advances, 2015, 5(14), 10304—10309 |
80 | Li R. X., Zhou Y. J., Liu C., Pei C. C., Shu W. K., Zhang C. Q., Liu L. Z., Zhou L., Wan J. J., Angew. Chem. Int. Ed., 2021, 60(22), 12504—12512 |
81 | Fu S. D., Yu Q., Liu Z. H., Hu P., Chen Q., Feng S. H., Mai L. Q., Zhou L., J. Mater. Chem. A, 2019, 7(18), 11234—11240 |
82 | Sun X. R., Zhang H. W., Zhou L., Huang X. D., Yu C. Z., Small, 2016, 12(27), 3732—3737 |
83 | Li L., Chen W., Luo W., Xiao Z. T., Zhao Y. L., Owusu K. A., Liu Z. H., Zhou L., Mai L. Q., Energy Technol., 2019, 7(8), 1801160 |
84 | He R. H., Li S. D., Liu H. Y., Zhou L., Mater. Chem. Front., 2022, 6(14), 1903—1911 |
85 | Hong Y. J., Son M. Y., Kang Y. C., Adv. Mater., 2013, 25(16), 2279—2283 |
86 | Ko Y. N., Chan Kang Y., Park S. B., Nanoscale, 2013, 5(19), 8899—8903 |
87 | Sim C. M., Choi S. H., Kang Y. C., Chem. Commun., 2013, 49(53), 5978—5980 |
88 | Chen Z., Xu L. H., Chen Q., Hu P., Liu Z. H., Yu Q., Zhu T., Liu H. C., Hu G. W., Zhu Z. Z., Zhou L., Mai L. Q., J. Mater. Chem. A, 2019, 7(12), 6740—6746 |
89 | Dong Z. H., Lai X. Y., Halpert J. E., Yang N. L., Yi L. X., Zhai J., Wang D., Tang Z. Y., Jiang L., Adv. Mater., 2012, 24(8), 1046—1049 |
90 | Dong Z. H., Ren H., Hessel C. M., Wang J. Y., Yu R. B., Jin Q., Yang M., Hu Z. D., Chen Y. F., Tang Z. Y., Zhao H. J., Wang D., Adv. Mater., 2014, 26(6), 905—909 |
91 | Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nature Energy, 2016, 1(5), 16050 |
92 | Wong Y. J., Zhu L. F., Teo W. S., Tan Y. W., Yang Y. H., Wang C., Chen H. Y., J. Am. Chem. Soc., 2011, 133(30), 11422—11425 |
93 | Han Y. D., Guo Z. L., Teng S. Y., Xia H. B., Wang D. Y., Han M. Y., Yang W. S., Chem. Mater., 2019, 31(18), 7470—7477 |
94 | Teng Z. G., Su X. D., Zheng Y. Y., Zhang J. J., Liu Y., Wang S. J., Wu J., Chen G. T., Wang J. D., Zhao D. Y., Lu G. M., J. Am. Chem. Soc., 2015, 137(24), 7935—7944 |
95 | Bin D. S., Chi Z. X., Li Y. T., Zhang K., Yang X. Z., Sun Y. G., Piao J. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2017, 139(38), 13492—13498 |
96 | Hu M., Furukawa S., Ohtani R., Sukegawa H., Nemoto Y., Reboul J., Kitagawa S., Yamauchi Y., Angew. Chem. Int. Ed., 2012, 51(4), 984—988 |
97 | Hu M., Belik A. A., Imura M., Yamauchi Y., J. Am. Chem. Soc., 2013, 135(1), 384—391 |
98 | Liu W. X., Huang J. J., Yang Q., Wang S. J., Sun X. M., Zhang W. N., Liu J. F., Huo F. W., Angew. Chem. Int. Ed., 2017, 56(20), 5512—5516 |
99 | Wang L. L., Tang K. B., Liu Z. P., Wang D. K., Sheng J., Cheng W., J. Mater. Chem., 2011, 21(12), 4352—4357 |
100 | Wang Z. Y., Wang Z. C., Wu H. B., Lou X. W., Sci. Rep., 2013, 3, 1391 |
101 | Zhao J. L., Wang J. Y., Bi R. Y., Yang M., Wan J. W., Jiang H. Y., Gu L., Wang D., Angew. Chem. Int. Ed., 2021, 60(49), 25719—25722 |
102 | Qi Y. R., Tong Z. Z., Zhao J. M., Ma L., Wu T. P., Liu H. Z., Yang C., Lu J., Hu Y. S., Joule, 2018, 2(11), 2348—2363 |
103 | Li D. W., Zhao X. X., Yu R. B., Wang B., Wang H., Wang D., Inorg. Chem. Front., 2018, 5(3), 535—540 |
104 | Zhang C. F., Wu H. B., Yuan C. Z., Guo Z. P., Lou X. W., Angew. Chem. Int. Ed., 2012, 51(38), 9592—9595 |
105 | Ji L. L., Zhu Y. Y., Teng X., Wang T., Wang S., Meyer T. J., Chen Z. F., Sci. Bull., 2022, 67(4), 398—407 |
106 | Luo H., Wang B., Liu T., Jin F., Liu R., Xu C. Y., Wang C. H., Ji K. M., Zhou Y., Wang D. L., Dou S. X., Energy Storage Mater, 2019, 19, 370—378 |
107 | Hu H., Guan B. Y., Xia B. Y., Lou X. W., J. Am. Chem. Soc., 2015, 137(16), 5590—5595 |
108 | Zhang J. T., Yu L., Chen Y., Lu X. F., Gao S. Y., Lou X. W., Adv. Mater., 2020, 32(16), e1906432 |
109 | Guan B. Y., Yu L., Lou X. W., Angew. Chem. Int. Ed., 2017, 56(9), 2386—2389 |
110 | Park S. K., Kim J. K., Kang Y. C., J. Mater. Chem. A, 2017, 5(35), 18823—18830 |
111 | Zhang P., Guan B. Y., Yu L., Lou X. W., Chem, 2018, 4(1), 162—173 |
112 | Wei Y. Z., Wan J. W., Yang N. L., Yang Y., Ma Y. W., Wang S. C., Wang J. R., Yu R. B., Gu L., Wang L. H., Wang L. Z., Huang W., Wang D., Natl Sci. Rev., 2020, 7(11), 1638—1646 |
113 | Jiang S. Y., Zhao K., Al⁃Mamun M., Zhong Y. L., Liu P. R., Yin H. J., Jiang L. X., Lowe S., Qi J., Yu R. B., Wang D., Zhao H. J., Inorg. Chem. Front., 2019, 6(7), 1667—1674 |
114 | Lee J., Hwang S. H., Yun J., Jang J., ACS Appl. Mater. Interfaces, 2014, 6(17), 15420—15426 |
115 | Qian J. F., Liu P., Xiao Y., Jiang Y., Cao Y. L., Ai X. P., Yang H. X., Adv. Mater., 2009, 21(36), 3663—3667 |
116 | Chen Y., Wang T. Y., Tian H. J., Su D. W., Zhang Q., Wang G. X., Adv. Mater., 2021, 33(29), e2003666 |
117 | Weiss M., Ruess R., Kasnatscheew J., Levartovsky Y., Levy N. R., Minnmann P., Stolz L., Waldmann T., Wohlfahrt⁃Mehrens M., Aurbach D., Winter M., Ein⁃Eli Y., Janek J., Adv. Energy Mater., 2021, 11(33), 2101126 |
118 | Peng L., Peng H. R., Liu Y., Wang X., Hung C. T., Zhao Z. W., Chen G., Li W., Mai L. Q., Zhao D. Y., Sci. Adv., 2021, 7(45), eabi7403 |
119 | Zhu X. B., Tang J. Y., Huang H. M., Lin T. G., Luo B., Wang L. Z., Sci. Bull., 2020, 65(6), 496—512 |
120 | Li Z., Wu H. B., Lou X. W., Energy Environ. Sci., 2016, 9(10), 3061—3070 |
121 | Li D. J., Gong B. B., Cheng X. L., Ling F. X., Zhao L. G., Yao Y., Ma M. Z., Jiang Y., Shao Y., Rui X. H., Zhang W., Zheng H., Wang J. B., Ma C., Zhang Q. B., Yu Y., ACS Nano, 2021, 15(12), 20607—20618 |
122 | Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nat. Energy, 2016, 1(5), 16050 |
123 | Wang F., Wang J. Y., Ren H., Tang H. J., Yu R. B., Wang D., Inorg. Chem. Front., 2016, 3(3), 365—369 |
124 | Ma Y. T., Liu P. F., Xie Q. S., Zhang G. B., Zheng H. F., Cai Y. X., Li Z., Wang L. S., Zhu Z. Z., Mai L. Q., Peng D. L., Nano Energy, 2019, 59, 184—196 |
125 | Luo W., Chen X. Q., Xia Y., Chen M., Wang L. J., Wang Q. Q., Li W., Yang J. P., Adv. Energy Mater., 2017, 7(24), 1701083 |
126 | Liu N. L., Lu Z. D., Zhao J., Mcdowell M. T., Lee H. W., Zhao W. T., Cui Y., Nature Nanotechnology, 2014, 9(3), 187—192 |
127 | Bin D. S., Li Y. M., Sun Y. G., Duan S. Y., Lu Y. X., Ma J. M., Cao A. M., Hu Y. S., Wan L. J., Adv. Energy Mater., 2018, 8(26), 1800855 |
128 | Bin D. S., Chi Z. X., Li Y., Zhang K., Yang X., Sun Y. G., Piao J. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2017, 139(38), 13492—13498 |
129 | Huang S. Z., Wang Z. H., Lim Y. V., Wang Y., Li Y., Zhang D. H., Yang H. Y., Adv. Energy Mater., 2021, 11(10), 2003689 |
130 | Zheng Z. J., Ye H., Guo Z. P., Energy Environ. Sci., 2021, 14(4), 1835—1853 |
131 | Li S. Q., Fan Z. Y., Energy Storage Mater., 2021, 34, 107—127 |
132 | Zhou G. M., Zhao Y. B., Manthiram A., Adv. Energy Mater., 2015, 5(9),1402263 |
133 | Zhang H. W., Zhou L., Huang X. D., Song H., Yu C. Z., Nano Res., 2016, 9(12), 3725—3734 |
134 | Salhabi E. H. M., Zhao J. L., Wang J. Y., Yang M., Wang B., Wang D., Angew. Chem. Int. Ed., 2019, 58(27), 9078—9082 |
135 | Zhang J. T., Hu H., Li Z., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(12), 3982—3986 |
136 | Kumar S., Saeed G., Zhu L., Hui K. N., Kim N. H., Lee J. H., Chem. Eng. J., 2021, 403, 126352 |
137 | Chatterjee D. P., Nandi A. K., J. Mater. Chem. A, 2021, 9(29), 15880—15918 |
138 | He Y., Xiang K. X., Wang Y. F., Zhou W., Zhu Y. R., Xiao L., Chen W. H., Chen X. H., Chen H., Cheng H., Lu Z. G., Carbon, 2019, 154, 330—341 |
139 | Andikaey Z., Ensafi A. A., Rezaei B., Hu J. S., Electrochim. Acta, 2022, 420, 140437 |
140 | Ren Y. W., Yu C., Tan X. Y., Huang H. L., Wei Q. B., Qiu J. S., Energy Environ. Sci., 2021, 14(3), 1176—1193 |
141 | Chen F. Y., Wu Z. Y., Adler Z., Wang H. T., Joule, 2021, 5(7), 1704—1731 |
142 | Zhao C. X., Liu J. N., Wang J., Ren D., Li B. Q., Zhang Q., Chem. Soc. Rev., 2021, 50(13), 7745—7778 |
143 | Wang L., Wan J. W., Wang J. Y., Wang D., Small Struct., 2021, 2(1), 2000041 |
144 | Fang L., Xie Y. P., Yang Y., Zhu B. Y., Wang Y. Y., Liu M. X., Zhao K. N., Zhao H. B., Zhang J. J., ACS Appl. Energy Mater., 2020, 3(1), 309—318 |
145 | Sun H. M., Xu X. B., Yan Z. H., Chen X., Cheng F. Y., Weiss P. S., Chen J., Chem. Mater., 2017, 29(19), 8539—8547 |
146 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
147 | Wang Y. C., Ren B. Y., Ou J. Z., Xu K., Yang C. H., Li Y. X., Zhang H. J., Sci. Bull., 2021, 66(12), 1228—1252 |
148 | Zhang F. F., Zhu Y. L., Lin Q., Zhang L., Zhang X. W., Wang H. T., Energy Environ. Sci., 2021, 14(5), 2954—3009 |
149 | Wang F. L., Fang R. Q., Zhao X., Kong X. P., Hou T. T., Shen K., Li Y. W., ACS Nano, 2022, 16(3), 4517—4527 |
150 | Wei Y. Z., Wan J. W., Wang J. Y, Zhang X., Yu R. B., Yang N. L., Wang D., Small, 2021, 17(22), 2005345 |
151 | Zhang P., Wang S. B., Guan B. Y., Lou X. W., Energy Environ. Sci., 2019, 12(1), 164—168 |
152 | Kokkonen M., Talebi P., Zhou J., Asgari S., Soomro S. A., Elsehrawy F., Halme J., Ahmad S., Hagfeldt A., Hashmi S. G., J. Mater. Chem. A, 2021, 9(17), 10527—10545 |
153 | Hashemi S. A., Ramakrishna S., Aberle A. G., Energy Environ. Sci., 2020, 13(3), 685—743 |
154 | Wang J. Y., Cui Y., Wang D., Adv. Mater., 2019, 31(38), e1801993 |
[1] | WANG Pengfei, FU Wenhao, SUN Shaoni, CAO Xuefei, YUAN Tongqi. Preparation of Hierarchical Porous Carbon Materials Using Cellulose Nanocrystals as Templates and Their Electrochemical Properties [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220497. |
[2] | ZHU Kerun, REN Wenxuan, ZHANG Wei, LI Wei. Salt-templated Synthesis and Morphological Control of Monodisperse Hollow Mesoporous Structures [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220607. |
[3] | LI Ziruo, ZHANG Hongjuan, ZHU Guoxun, XIA Wei, TANG Jing. Iron Phthalocyanine Coated Nitrogen-doped Hollow Carbon Spheres for Efficient Catalysis of Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220677. |
[4] | SHEN Xinyi, ZHANG Sen, WANG Shutao, SONG Yongyang. Synthesis Strategies for Polymer Hollow Particles [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220627. |
[5] | YANG Jiye, SUN Dayin, WANG Yan, GU Anqi, YE Yilan, DING Shujiang, YANG Zhenzhong. Progresses in Template Synthesis and Applications of Hollow Materials [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220665. |
[6] | YE Zuyang, YIN Yadong. Etching-based Hollowing of Nanostructures [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220656. |
[7] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[8] | GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220167. |
[9] | CHEN Zhaoyang, XUE Yurui, LI Yuliang. Synthesis and Applications of Graphdiyne Based Zerovalent Atomic Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220063. |
[10] | CHU Yao, WANG Shuo, ZHANG Zinuo, WANG Yibo, CAI Yibing. Preparation and Properties of Cu Particles Loaded Foam-based Phase Change Composites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210619. |
[11] | WEI Yuchen, WU Tingting, YANG Lei, JIN Biyu, LI Hongqiang, HE Xiaojun. Preparation and Supercapacitive Performance of Naphthalene-based Interconnected Porous Carbon Nanocapsules [J]. Chem. J. Chinese Universities, 2021, 42(9): 2852. |
[12] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[13] | XIE Fan, CHEN Shanshan, ZHUO Longhai, LU Zhaoqing, GAO Kun, DAI Qiyang. Fabrication of Poly(p-xylene) Nanofiber Arrays by CVD Liquid Crystal Template Method and Their Degradability [J]. Chem. J. Chinese Universities, 2021, 42(8): 2643. |
[14] | DING Jiale, JIN Lan, CUI Zengduo, ZHANG Haibo, ZHANG Yunhe, JIANG Zhenhua. Preparation and Dielectric Properties of Nanocomposites with Double Cross-linking Network Structure [J]. Chem. J. Chinese Universities, 2021, 42(6): 2015. |
[15] | GAO Juan, SUN Quanhu, HUANG Changshui. Graphdiyne-based Nanostructured Materials and Their Applications in Energy Storage and Conversion [J]. Chem. J. Chinese Universities, 2021, 42(5): 1501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||