Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (2): 20210589.doi: 10.7503/cjcu20210589
• Article: Inorganic Chemistry • Previous Articles Next Articles
TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan(), WANG Yu, WANG Jian(
)
Received:
2021-08-17
Online:
2022-02-10
Published:
2021-10-07
Contact:
WU Pengyan,WANG Jian
E-mail:wpyan@jsnu.edu.cn;wjian@jsnu.edu.cn
Supported by:
CLC Number:
TrendMD:
TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan, WANG Yu, WANG Jian. A Squaramide-containing Luminescent Metal-organic Framework as a High Selective Sensor for Histidine[J]. Chem. J. Chinese Universities, 2022, 43(2): 20210589.
Compound | Co?L | Z | 8 |
---|---|---|---|
Formula | C10H13CoNO9.5 | Rint | 0.0267 |
Formula weight | 358.14 | μ/mm-1 | 1.369 |
T/K | 296(2) | Dc/(g·cm-3) | 1.825 |
Crystal system | Monoclinic | F(000) | 1464 |
Space group | C2/c | θ range/(°) | 3.25—27.47 |
a/nm | 2.6025(3) | Goodness of fit | 1.036 |
b/nm | 1.01239(16) | Reflections collected | 11511 |
c/nm | 1.05487(6) | Independent reflections | 2998 |
α/(°) | 90 | R[I >2σ(I), all data] | 0.0295 |
β/(°) | 110.266(6) | Rw[I >2σ(I), all data] | 0.0786 |
γ/(°) | 90 | CCDC number | 2109583 |
V/nm3 | 2.6073(5) |
Table 1 Crystallographic data and structure refinement parameters for Co-L
Compound | Co?L | Z | 8 |
---|---|---|---|
Formula | C10H13CoNO9.5 | Rint | 0.0267 |
Formula weight | 358.14 | μ/mm-1 | 1.369 |
T/K | 296(2) | Dc/(g·cm-3) | 1.825 |
Crystal system | Monoclinic | F(000) | 1464 |
Space group | C2/c | θ range/(°) | 3.25—27.47 |
a/nm | 2.6025(3) | Goodness of fit | 1.036 |
b/nm | 1.01239(16) | Reflections collected | 11511 |
c/nm | 1.05487(6) | Independent reflections | 2998 |
α/(°) | 90 | R[I >2σ(I), all data] | 0.0295 |
β/(°) | 110.266(6) | Rw[I >2σ(I), all data] | 0.0786 |
γ/(°) | 90 | CCDC number | 2109583 |
V/nm3 | 2.6073(5) |
Fig.1 Coordinated environment of Co2+ ions in Co?L(A), coordination mode of L4- ligands in Co?L(B), 1D double chain structure in Co?L composed of Co2+ ions and L4- units(C), 3D structure of Co?L along the c direction(D) and connolly surface of Co-L along the c direction with the coordinated water molecular omitted(E)(C) Symmetry code A: 1-x, y, 3/2-z; (B) symmetry code A: 1-x, y, 3/2-z; B: x, -1+y, z; C: 1-x, -1+y, 3/2-z.
Fig.2 Powder X?ray diffraction profiles for simulated Cd?L, the as?synthesized Cd?L, Cd?L samples soaked in aqueous solutions at pH values of 5.5 and 9.3, after His sensing(A) and TGA profile of Cd?L in air(B)
Fig.4 Fluorescence spectra of Co?L upon addition of different amounts of His in water emulsion(A) and relative fluorescence intensity of Co?L with varying His concentrations(0—20 μmol/L)(B)
Fig.5 Fluorescence responses of Co?L to various amino acids in waterThe red bars represent the emission intensities of Co?L in the presence of 0.68 mmol/L amino acids, the green bars represent the emission upon subsequent addition of 0.68 mmol/L His to the above solution. a. Free; b. Gln; c. Ala; d. Met; e. Phe; f. Ile; g. Val; h. Trp; i. Asn; j. Gly; k. Cys; l. Leu; m. Tyr; n. Pro; o. Lys; p. Arg; q. Ser; r. Thr; s. Glu; t. Asp; u. His.
Fig.6 FTIR spectra of Co?L(a), Co?L obtained after treated with His(b) and free his(c)(A) and interaction representation between His and Co?L computed via molecular force field?based calculations(B)
1 | Wang J., Liu H. B., Tong Z., Ha C. S., Coord. Chem. Rev.,2015, 303, 139—184 |
2 | Xiao J., Song L., Liu M., Wang X., Liu Z., Inorg. Chem.,2020, 59, 6390—6397 |
3 | Zhao Y., Wan M. Y., Bai J. P., Zeng H., Lu W., Li D., J. Mater. Chem. A,2019, 7, 11127—11133 |
4 | Zheng X., Yao T., Zhu Y., Shi S., Biosens. Bioelectron.,2015, 66, 103—108 |
5 | Wu C., Fan D., Zhou C., Liu Y., Wang E., Anal. Chem., 2016, 88, 2899—2903 |
6 | Hua Y., Lv X., Cai Y., Liu H., Li S., Wan Y., Wang H., Chem. Commun., 2019, 55, 1271—1274 |
7 | Storer R. I., Aciro C., Jones L. H., Chem. Soc. Rev., 2011, 40, 2330—2346 |
8 | Malerich J. P., Hagihara K., Rawal V. H., J. Am. Chem. Soc., 2008, 130, 14416—14417 |
9 | Busschaert N., Kirby I. L., Young S., Coles S. J., Horton P. N., Light M. E., Gale P. A., Angew. Chem., Int. Ed., 2012, 51, 4426—4430 |
10 | Portell A., Barbas R., Braga D., Polito M., Puigjaner C., Prohens R., CrystEngComm, 2009, 11, 52—54 |
11 | Furukawa H., Cordova K. E., O′Keeffe M., Yaghi O. M., Science, 2013, 341, 1230444 |
12 | Kitagawa S., Matsuda R., Coord. Chem. Rev., 2007, 251, 2490—2509 |
13 | Férey G., Chem. Soc. Rev., 2008, 37, 191—214 |
14 | Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112, 673—674 |
15 | Li J. R., Kuppler R. J., Zhou H. C., Chem. Soc. Rev., 2009, 38, 1477—1504 |
16 | Xia Y. P., Wang C. X., Zheng J. Y., Li N., Chang Z., Bu X. H., Chem. J. Chinese Universities, 2020, 41(11), 2415—2420(夏雨沛, 王晨雪, 郑金玉, 李娜, 常泽, 卜显和. 高等学校化学学报, 2020, 41(11), 2415—2420) |
17 | Duan J. G., Higuchi M., Foo M. L., Horike S., Rao K. P., Kitagawa S., Inorg. Chem., 2013, 52, 8244—8249 |
18 | Seo J. S., Whang D., Lee H., Jun S. I., Oh J., Jeon Y. J., Kim K., Nature, 2000, 404, 982—986 |
19 | Xiao J. D., Jiang H. L., Acc. Chem. Res., 2019, 52, 356—366 |
20 | Wu P., Li Y., Zheng J. J., Hosono N., Otake K., Wang J., Liu Y., Xia L., Jiang M., Sakaki S., Kitagawa S., Nature Commun., 2019, 10, 4362 |
21 | Qin J. S., Du D. Y., Li,W. L., Zhang J. P., Li S. L., Su Z. M., Wang,X. L., Xu Q., Shao K. Z., Lan Y. Q., Chem. Sci., 2012, 3, 2114—2118 |
22 | Rocca J. D., Liu D. M., Lin W. B., Acc. Chem. Res., 2011, 44, 957—968 |
23 | Hang T., Zhang W., Ye H. Y., Xiong R. G., Chem. Soc. Rev., 2011, 40, 3577—3598 |
24 | Cui Y., Yue Y., Qian G., Chen B., Chem. Rev., 2012, 112, 1126—1162 |
25 | Hu Z., Deibert B. J., Li J., Chem. Soc. Rev., 2014, 43, 5815—5840 |
26 | Wang B., Lv X. L., Feng D., Xie L. H., Zhang J., Li M., Xie Y., Li J. R., Zhou H. C., J. Am. Chem. Soc., 2016, 138, 6204—6216 |
27 | Tian D., Li Y., Chen R. Y., Chang Z., Wang G. Y., Bu X. H., J. Mater. Chem. A, 2014, 2, 1465—1470 |
28 | Wang D. M., Liu Z. H., Li G. H., Liu Y. L., Li C. X., Chem. J. Chinese Universities, 2018, 39(9), 1886—1892(王冬梅, 刘子华, 李光华, 刘云凌, 李春霞. 高等学校化学学报, 2018, 39(9), 1886—1892) |
29 | Zhou Y., Chen H. H., Yan B., J. Mater. Chem. A, 2014, 2, 13691—13697 |
30 | Liu B., Wu W. P., Hou L., Wang Y. Y., Chem. Commun., 2014, 50, 8731—8734 |
31 | Jiang H., Yang K., Zhao X., Zhang W., Liu Y., Jiang J., Cui Y., J. Am. Chem. Soc., 2021, 143, 390—398 |
32 | Yao R. X., Fu H. H., Yu B., Zhang X. M., Inorg. Chem. Front., 2018, 5, 153—159 |
33 | Liu Y., Xuan W., Cui Y., Adv. Mater., 2010, 22, 4112—4135 |
34 | Gao W. Y., Chrzanowski M., Ma S., Chem. Soc. Rev., 2014, 43, 5841—5866 |
35 | Jiang M., Li P., Wu P., Zhang F., Tian X., Deng C., Wang J., Chem. Commun., 2018, 54, 9131—9134 |
36 | Sheldrick G. M., SHELXS 97, Program for Crystal Structure Refinement, University of Gottingen, 1997 |
37 | Wenger O. S., Chem. Rev., 2013, 113, 3686—3733 |
38 | Pu F., Huang Z., Ren J., Qu X., Anal. Chem., 2010, 82, 8211—8216 |
39 | Okwieka U., Natkaniec K. H., Misiaszek T., Medycki W., Baran J., Szostak M. M., J. Chem. Phys., 2009, 131, 144505 |
40 | Frisch M. J. T., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A. C., Cheeseman J. R., Scalmani G., Barone V., Mennucci G. A. N. B., Petersson H., Caricato M., Li X., Hratchian H., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y. K. T., Honda O., Nakai H., Vreven T., Montgomery J. A., Peralta Jr. J. E. O., Oligaro F., Bearpark M., Heyd J. J., Brothers E., Kudin V. N., Staroverov K. K. N. R., Normand J., Raghavachari K., Rendell A. B., Iyengar S. S., Tomasi J., Cossi M., Rega J. M., Millam M., Knox J. E., Cross J. B., Bakken V., Adamo C. J., Gomperts J., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli J. W., Ochterski J. W., Martin R. L., Morokuma K. Z., Zarkrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J. D., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009 |
[1] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[2] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[3] | XING Peiqi, LU Tong, LI Guanghua, WANG Liyan. Controllable Syntheses of Two Cd(II) Metal-organic Frameworks Possessing Related Structures [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220218. |
[4] | WANG Jie, HUO Haiyan, WANG Yang, ZHANG Zhong, LIU Shuxia. General Strategy for In situ Synthesis of NENU-n Series Polyoxometalate-based MOFs on Copper Foil [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210557. |
[5] | SHI Xiaofan, ZHU Jian, BAI Tianyu, FU Zixuan, ZHANG Jijie, BU Xianhe. Research Status and Progress of MOFs with Application in Photoelectrochemical Water-splitting [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210613. |
[6] | WU Ji, ZHANG Hao, LUO Yuhui, GENG Wuyue, LAN Yaqian. A Microporous Cationic Ga(III)-MOF with Fluorescence Properties for Selective sensing Fe3+ Ion and Nitroaromatic Compounds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210617. |
[7] | LI Wen, QIAO Junyi, LIU Xinyao, LIU Yunling. Zirconium-based Metal-Organic Framework with Naphthalene for Fluorescent Detection of Nitroaromatic Explosives in Water [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210654. |
[8] | MO Zongwen, ZHANG Xuewen, ZHOU Haolong, ZHOU Dongdong, ZHANG Jiepeng. Guest-responses of A Porous Coordination Polymer Based on Synergistic Hydrogen Bonds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210576. |
[9] | HAN Zongsu, YU Xiaoyong, MIN Hui, SHI Wei, CHENG Peng. A Rare Earth Metal-Organic Framework with H6TTAB Ligand [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210342. |
[10] | LIU Xueguang, YANG Xiaoshan, MA Jingjing, LIU Weisheng. Separating Methyl Blue Selectively from the Mixture of Dyes by Europium Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210715. |
[11] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[12] | ZHANG Chi, SUN Fuxing, ZHU Guangshan. Synthesis, N2 Adsorption and Mixed-matrix Membrane Performance of Bimetal Isostructural CAU-21 [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210578. |
[13] | ZHAO Yangyang, LIU Qiyong, CHEN Boxin, ZHAO Bin, ZHOU Haimei, LI Xinxin, ZHENG Dan, FENG Fei. Silicon-based Micro Gas Chromatographic Column Using Metal-Organic Framework Material ZIF-8 as Stationary Phase [J]. Chem. J. Chinese Universities, 2021, 42(6): 1736. |
[14] | ZHANG Renli, WANG Yao, YU Zhiquan, SUN Zhichao, WANG Anjie, LIU Yingya. Molybdenum Peroxide Anchored on Fluoronated UiO-66 as Catalyst in the Oxidation of Sulfur Containing Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1914. |
[15] | WANG Longjie, FAN Hongchuan, QIN Yu, CAO Qiue, ZHENG Liyan. Research Progress of Metal-organic Frameworks in the Field of Chemical Separation and Analysis [J]. Chem. J. Chinese Universities, 2021, 42(4): 1167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||