Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (4): 20220636.doi: 10.7503/cjcu20220636
• Physical Chemistry • Previous Articles Next Articles
YAN Yutian, WU Si, CHANG Kangkang, XIA Yuzheng, CHEN Xiaonong, SHI Shuxian()
Received:
2022-09-24
Online:
2023-04-10
Published:
2022-12-02
Contact:
SHI Shuxian
E-mail:shisx@mail.buct.edu.cn
Supported by:
CLC Number:
TrendMD:
YAN Yutian, WU Si, CHANG Kangkang, XIA Yuzheng, CHEN Xiaonong, SHI Shuxian. Preparation and Catalytic Performance of Surface-covered AuNPs@PNIPAM Composite Particles[J]. Chem. J. Chinese Universities, 2023, 44(4): 20220636.
No. | Composite | Temperature range/°C | Color change | Δλ | Note | Ref. |
---|---|---|---|---|---|---|
1 | AuNPs@PNIPAM in PAAm hydrogel | 24—50 | Red↔grayish violet | 176 | Eight times concentration of AuNPs@PNIPAM in hydrogel | [ |
2 | PNIPAM/AuNP | 25—50 | Wine↔violet | 152 | Low AuNPs loadings(surface covered) | [ |
3 | PNIPAM⁃Au a | 20—50 | — b | 40 | In situ reduction | [ |
4 | Au@NH2⁃PNIPAM | 25—45 | — b | 30 | PNIPAM⁃NH2 | [ |
5 | Au@PNIPAM⁃co⁃AA | 25—50 | Wine↔violet | 29 | Equilibrium time was 30 min | [ |
6 | AuNPs@PNIPAM a | 25—50 | Red↔purple | 16.7 | Equilibrium time was 10 min | This work |
7 | AuAg@pNIPAM@Ag a | 25—50 | — b | 11 | Core⁃satellite | [ |
8 | Au@pNIPAM | 10—50 | — b | 10 | Core⁃shell | [ |
9 | PNIPAMs⁃AuNP a | 25—50 | Remained red and transparent | 1.2 | Core⁃shell | [ |
10 | SiO2@PMBA@Au@PNIPAM a | 20—40 | — b | No shift | Yolk⁃shell | [ |
11 | MNP@SiO2⁃PNIPAm⁃AuNPs a | 25—40 | Small variation in transparency | No date d | Core⁃satellite | [ |
12 | Au⁃PNIPAM | 25—50 | — b | No date d | Yolk⁃shell | [ |
13 | Core⁃satellite nanoassemblies | 25—55 | — b | No date d | Core⁃satellite | [ |
14 | PNIPAM⁃Au a | 20—45 | Small variation in transparency | — b | High AuNPs loadings(random filled) | [ |
15 | Gold@polymer core⁃shell nanoparticles | 25—50 | Small variation in transparency | — b | Core⁃shell | [ |
16 | PNIPAM/Au@meso⁃SiO2a | 25—50 | Light purple(transparent to cloudy) | — b | Hollow microsphere | [ |
Table 1 Comparison of color change and absorption peak shifts in different references
No. | Composite | Temperature range/°C | Color change | Δλ | Note | Ref. |
---|---|---|---|---|---|---|
1 | AuNPs@PNIPAM in PAAm hydrogel | 24—50 | Red↔grayish violet | 176 | Eight times concentration of AuNPs@PNIPAM in hydrogel | [ |
2 | PNIPAM/AuNP | 25—50 | Wine↔violet | 152 | Low AuNPs loadings(surface covered) | [ |
3 | PNIPAM⁃Au a | 20—50 | — b | 40 | In situ reduction | [ |
4 | Au@NH2⁃PNIPAM | 25—45 | — b | 30 | PNIPAM⁃NH2 | [ |
5 | Au@PNIPAM⁃co⁃AA | 25—50 | Wine↔violet | 29 | Equilibrium time was 30 min | [ |
6 | AuNPs@PNIPAM a | 25—50 | Red↔purple | 16.7 | Equilibrium time was 10 min | This work |
7 | AuAg@pNIPAM@Ag a | 25—50 | — b | 11 | Core⁃satellite | [ |
8 | Au@pNIPAM | 10—50 | — b | 10 | Core⁃shell | [ |
9 | PNIPAMs⁃AuNP a | 25—50 | Remained red and transparent | 1.2 | Core⁃shell | [ |
10 | SiO2@PMBA@Au@PNIPAM a | 20—40 | — b | No shift | Yolk⁃shell | [ |
11 | MNP@SiO2⁃PNIPAm⁃AuNPs a | 25—40 | Small variation in transparency | No date d | Core⁃satellite | [ |
12 | Au⁃PNIPAM | 25—50 | — b | No date d | Yolk⁃shell | [ |
13 | Core⁃satellite nanoassemblies | 25—55 | — b | No date d | Core⁃satellite | [ |
14 | PNIPAM⁃Au a | 20—45 | Small variation in transparency | — b | High AuNPs loadings(random filled) | [ |
15 | Gold@polymer core⁃shell nanoparticles | 25—50 | Small variation in transparency | — b | Core⁃shell | [ |
16 | PNIPAM/Au@meso⁃SiO2a | 25—50 | Light purple(transparent to cloudy) | — b | Hollow microsphere | [ |
No. | Catalyst | Configuration | Au(composite)/4⁃NP a | T/℃ | t1/2/min | Kapp/min-1 | Con.(%) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | MNP@SiO2⁃PNIPAm⁃AuNPs | Core⁃satellite | 7.5 | 25 | 0.99 | 0.70 | >97 | [ |
2 | AuNPs@GFDP | Core⁃shell | 0.43 | 25 | 1.05 | 0.66 | >97 | [ |
3 | AuNPs@PNIPAM | Surface covered | 0.17 | 25 | 1.31 | 0.53 | >97 | This work |
4 | PNIPAM⁃Au | Random filled | 0.00068 | 20 | 1.47 | 0.47 | >85 | [ |
5 | SiO2@PMBA@Au@PNIPAM | Yolk⁃shell | 0.059 | 20 | 3.85 | 0.18 | >97 | [ |
6 | PNIPAM⁃AuNPs | Core⁃shell | 0.23 | 25 | 5.33 | 0.16 | >93 | [ |
7 | Au/micelle composite | Random filled | 0.018 | 25 | 91.69 | 7.56×10-3 | >80 | [ |
8 | Au@P1 | Core⁃shell | 0.017 | 25 | 1.44×104 | 4.80×10-5 | >95 | [ |
9 | Au@PNIPAm/PEI | Surface covered | 13.5 | 29 | 0.47 | 1.46 | >30 | [ |
10 | Au@mesoporous⁃SiO2 | Hollow microsphere | 0.024 | 30 | 1.16 | 0.60 | >90 | [ |
11 | AuAg@pNIPAM@Ag | Core⁃satellite | 4.5 | 25 | 1.39 | 0.50 | >97 | [ |
12 | RGO/PVEIM⁃b⁃PNIPAM/GNP | Surface covered(on sheets) | 0.33 | 30 | 1.51 | 0.46 | >85 | [ |
13 | Fe3O4/Au/SiO2/NIPAM | Yolk⁃shell | 0.0035 | 25 | 3.47 | 0.20 | >90 | [ |
14 | PNIPAM⁃catechol@Au | Random filled | 7.0 | 25 | 10.50 | 6.60×10-2 | >60 | [ |
15 | AuNR@PNV@AuNP | Core⁃satellite | 0.05 mg b | 25±5 | 2.77 | 0.25 | >97 | [ |
16 | PNIPAM⁃Au | Random filled | 0.03 mg b | 30 | 4.08 | 0.17 | >95 | [ |
Table 2 Comparison of the reaction time and Kapp in different references
No. | Catalyst | Configuration | Au(composite)/4⁃NP a | T/℃ | t1/2/min | Kapp/min-1 | Con.(%) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | MNP@SiO2⁃PNIPAm⁃AuNPs | Core⁃satellite | 7.5 | 25 | 0.99 | 0.70 | >97 | [ |
2 | AuNPs@GFDP | Core⁃shell | 0.43 | 25 | 1.05 | 0.66 | >97 | [ |
3 | AuNPs@PNIPAM | Surface covered | 0.17 | 25 | 1.31 | 0.53 | >97 | This work |
4 | PNIPAM⁃Au | Random filled | 0.00068 | 20 | 1.47 | 0.47 | >85 | [ |
5 | SiO2@PMBA@Au@PNIPAM | Yolk⁃shell | 0.059 | 20 | 3.85 | 0.18 | >97 | [ |
6 | PNIPAM⁃AuNPs | Core⁃shell | 0.23 | 25 | 5.33 | 0.16 | >93 | [ |
7 | Au/micelle composite | Random filled | 0.018 | 25 | 91.69 | 7.56×10-3 | >80 | [ |
8 | Au@P1 | Core⁃shell | 0.017 | 25 | 1.44×104 | 4.80×10-5 | >95 | [ |
9 | Au@PNIPAm/PEI | Surface covered | 13.5 | 29 | 0.47 | 1.46 | >30 | [ |
10 | Au@mesoporous⁃SiO2 | Hollow microsphere | 0.024 | 30 | 1.16 | 0.60 | >90 | [ |
11 | AuAg@pNIPAM@Ag | Core⁃satellite | 4.5 | 25 | 1.39 | 0.50 | >97 | [ |
12 | RGO/PVEIM⁃b⁃PNIPAM/GNP | Surface covered(on sheets) | 0.33 | 30 | 1.51 | 0.46 | >85 | [ |
13 | Fe3O4/Au/SiO2/NIPAM | Yolk⁃shell | 0.0035 | 25 | 3.47 | 0.20 | >90 | [ |
14 | PNIPAM⁃catechol@Au | Random filled | 7.0 | 25 | 10.50 | 6.60×10-2 | >60 | [ |
15 | AuNR@PNV@AuNP | Core⁃satellite | 0.05 mg b | 25±5 | 2.77 | 0.25 | >97 | [ |
16 | PNIPAM⁃Au | Random filled | 0.03 mg b | 30 | 4.08 | 0.17 | >95 | [ |
1 | Sarfraz N., Khan I., Chem. Asian J., 2021, 16, 720—742 |
2 | Hua Z., Yu T., Liu D., Xianyu Y., Biosens. Bioelectron., 2021, 179, 113076—113089 |
3 | Wang Y. Q., Zhang Y. Y., Wu X. G., He X. W., Li W. Y., Mater. Lett., 2015, 143, 326—329 |
4 | Falahati M., Attar F., Sharifi M., Saboury A. A., Salihi A., Aziz F. M., Kostova I., Burda C., Priecel P., Lopez⁃Sanchez J. A., Laurent S., Hooshmand N., El⁃Sayed M. A., Biochim. Biophys. Acta. Gen. Subj., 2020, 1864, 129435—129461 |
5 | Zhao P., Li N., Astruc D., Coord. Chem. Rev., 2013, 257, 638—665 |
6 | Chatterjee S., Lou X. Y., Liang F., Yang Y. W., Coord. Chem. Rev., 2022, 459, 214461—214495 |
7 | Siirilä J., Karesoja M., Pulkkinen P., Malho J. M., Tenhu H., Eur. Polym. J., 2019, 115, 59—69 |
8 | Zheng P., Jiang X., Zhang X., Zhang W., Shi L., Langmuir, 2006, 22, 9393—9396 |
9 | Zhang C. L., Cao F. H., Wang J. L., Yu Z. L., Ge J., Lu Y., Wang Z. H., Yu S. H., ACS Appl. Mater. Interfaces, 2017, 9, 24857—24863 |
10 | Tanaka T., Phys. Rev. Lett., 1978, 40, 820—823 |
11 | Yee M. M., Tsubone M., Morita T., Yusa S. I., Nakashima K., J. Lumin., 2016, 176, 318—323 |
12 | Ngadaonye J. I., Cloonan M. O., Geever L. M., Higginbotham C. L., J. Polym. Res., 2011, 18, 2307—2324 |
13 | Chen Z., Cui Z. M., Cao C. Y., He W. D., Jiang L., Song W. G., Langmuir, 2012, 28, 13452—13458 |
14 | Wang D., Duan H., Lü J., Lü C., J. Mater. Chem. A, 2017, 5, 5088—5097 |
15 | Chen L. Y., Ou C. M., Chen W. Y., Huang C. C., Chang H. T., ACS Appl. Mater. Interfaces, 2013, 5, 4383—4388 |
16 | Marcelo G., López⁃González M., Mendicuti F., Tarazona M. P., Valiente M., Macromolecules, 2014, 47, 6028—6036 |
17 | Tzounis L., Dona M., Lopez⁃Romero J. M., Fery A., Contreras⁃Caceres R., ACS Appl. Mater. Interfaces, 2019, 11, 29360—29372 |
18 | Murphy S., Jaber S., Ritchie C., Karg M., Mulvaney P., Langmuir, 2016, 32, 12497—12503 |
19 | Magnozzi M., Brasse Y., König T. A. F., Bisio F., Bittrich E., Fery A., Canepa M., ACS Appl. Nano Mater., 2020, 3, 1674—1682 |
20 | Tian J., Huang B., Zhang W., Langmuir, 2019, 35, 266—275 |
21 | Wu L., Glebe U., Böker A., Adv. Mater. Interfaces, 2017, 4, 1700092—1700101 |
22 | Song J. E., Cho E. C., Sci. Rep., 2016, 6, 34622—34631 |
23 | Contreras⁃Cáceres R., Pacifico J., Pastoriza⁃Santos I., Pérez⁃Juste J., Fernández⁃Barbero A., Liz⁃Marzán L. M., Adv. Funct. Mater., 2009, 19, 3070—3076 |
24 | Goodall A. R., Wilkinson M. C., Hearn J., J. Polym. Sci. A: Polym. Chem., 1977, 15, 2193—2218 |
25 | Gu T., The Study on the Poly(N⁃isopropylacrylamide) Hydrogel Microspheres with Narrow Phase Transition Temperature Range, Donghua University, Shanghai, 2007 |
顾婷. 相转变温度范围窄的聚(N⁃异丙基丙烯酰胺)水凝胶微球的研究, 上海: 东华大学, 2007 | |
26 | Wu Y. M., Liu Y. T., Xu J., Zhang N. N., E⁃Polymers, 2010, 10, 78—86 |
27 | Varga I., Gilányi T., Mészáros R., Filipcsei G., Zrínyi M., J. Phys. Chem. B, 2001, 105, 9071—9076 |
28 | Zhang Q. S., Synthesis and Characterization of Novel Temperature⁃sensitive Poly(N⁃isopropylacrylamide) Based Microgels, Donghua University, Shanghai, 2008 |
张青松. 新型聚(N⁃异丙基丙烯酰胺)类温敏性微凝胶的合成与表征, 上海: 东华大学, 2008 | |
29 | Contreras⁃Caceres R., Schellkopf L., Fernandez⁃Lopez C., Pastoriza⁃Santos I., Perez⁃Juste J., Stamm M., Langmuir, 2015, 31, 1142—1149 |
30 | Lim S., Song J. E., La J. A., Cho E. C., Chem. Mater., 2014, 26, 3272—3279 |
31 | Choe A., Yeom J., Shanker R., Kim M. P., Kang S., Ko H., NPG Asia Mater., 2018, 10, 912—922 |
32 | Du J.T., Qiao M., Pu Y., Wang J. X., Chen J. F., Appl. Catal. A⁃Gen., 2021, 624, 118323—118331 |
33 | Qian Z., Guye K. N., Masiello D. J., Ginger D. S., J. Phys. Chem. B, 2017, 121, 1092—1099 |
34 | Samai S., Qian Z., Ling J., Guye K. N., Ginger D. S., ACS Appl. Mater. Interfaces, 2018, 10, 8976—8984 |
35 | Turek V. A., Cormier S., Sierra⁃Martin B., Keyser U. F., Ding T., Baumberg J. J., Adv. Opt. Mater., 2018, 6, 1701270—1701275 |
36 | Carregal⁃Romero S., Buurma N. J., Pérez⁃Juste J., Liz⁃Marzán L. M., Hervés P., Chem. Mater., 2010, 22, 3051—3059 |
37 | Zhao P., Feng X., Huang D., Yang G., Astruc D., Coord. Chem. Rev., 2015, 287, 114—136 |
38 | Pradhan N., Pal A., Pal T., Colloids Surf. A: Physicochem. Eng. Asp., 2002, 196, 247—257 |
39 | Wang Y., Wang L., Hao J., Dong S., New J. Chem., 2018, 42, 2149—2157 |
40 | Besold D., Risse S., Lu Y., Dzubiella J., Ballauff M., Ind. Eng. Chem. Res., 2021, 60, 3922—3935 |
41 | Shi S., Zhang L., Wang T., Wang Q., Gao Y., Wang N., Soft Matter, 2013, 9, 10966—10970 |
42 | Liu W., Zhu X., Xu C., Dai Z., Meng Z., Nanomaterials (Basel), 2018, 8, 963—978 |
43 | Wu S., Lei L., Xia Y. Z., Oliver S., Chen X. N., Boyer C., Nie Z. Y., Shi S. X., Polym. Chem., 2021, 12, 6903—6913 |
44 | Lu J., Yang Y., Gao J., Duan H., Lu C., Langmuir, 2018, 34, 8205—8214 |
45 | Xiong D., Li Z., Zou L., He Z., Liu Y., An Y., Ma R., Shi L., J. Colloid Interface Sci., 2010, 341, 273—279 |
46 | Tan N. P. B., Lee C. H., Li P., Polymers (Basel), 2016, 8, 105—118 |
47 | Chen S., Xiang Y., Peng C., Xu W., Banks M. K., Wu R., Inorg. Chem. Front., 2019, 6, 903—913 |
48 | Yang K., Dai Z., Chu Y., Chen G., Micro Nano Lett., 2016, 11, 129—136 |
[1] | GAO Fengyu, CHEN Du, LUO Ning, YAO Xiaolong, DUAN Erhong, YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Catalytic Performance and Reaction Mechanism of Chlorobenzene Oxidation over MnO x -CeO2 Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220690. |
[2] | KUANG Huayi, CHEN Chen. Synthesis Methods and Electrocatalytic Performance of Noble-metal Nanoframes Catalysts [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220586. |
[3] | ZHANG Taiwen, GUO Jun, ZHANG Dan, YUAN Changmei, QIU Shuangyan. Synthesis, Characterization and Catalytic Oxidation Iodine Ion Performance of trz-Cl-Cu-PMo12 [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220215. |
[4] | ZHANG Ronghui, MIN Deng, WANG Lailai, XIE Wenjian. Research Progress of Catalysts for Gas-phase Fluorination to Synthesize Hydorfluoroolefins† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2199. |
[5] | MA Qinghai,CUI Fang,LIU Mufei,XU linxu,ZHANG Jiajia,CUI Tieyu. Synthesis and Catalytic Performance of Pd/PdO Nanocomposite Microspheres [J]. Chem. J. Chinese Universities, 2019, 40(10): 2041. |
[6] | XIAO Shanshan, OUYANG Yiting, LI Xiaoyun, WANG Zhao, WU Pan, DENG Zhao, CHEN Lihua, SU Baolian. Synthesis of a Core-shell Structured Ag/ZIF-8 Catalyst with Mesoporous Silica Shell† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1235. |
[7] | YANG Ziwei, ZHOU Shunli, WANG Rui, WANG Feng, JIANG Yan, ZHANG Xiuqin. Preparation and Characterization of Self-cleaning Cotton Fabric† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1880. |
[8] | ZHANG Yanping,YANG Chunhui,CHEN Pan,RAN Tangchun,LI Jiao,YIN Yongxiang. Activity of Catalysts Reduced by Plasma in CO2 Methanation† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1521. |
[9] | WANG Huichun, WANG Fachun, LI Baolin. Preparation of Cyclodextrin-based Mesoporous Carbon and Its Catalytic Performance† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2076. |
[10] | CAO Xiaolu, WANG Longlong, WANG Yajun, XU Qunjie, LI Qiaoxia. Facile Preparation of Amino-modified Pd/TiO2/C Nanocatalyst and Its Electrocatalytic Performance for Ethanol Oxidation in Alkaline Solution† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1187. |
[11] | LIU Chao, ZHUO Xin, CHENG Hui, LIU Chuang, LIU Xinhua. Synthesis, Crystal Structure and Homogeneous Catalytic Performance of Zinc Complex Based on Diethylenetriamine Ligand† [J]. Chem. J. Chinese Universities, 2015, 36(5): 831. |
[12] | LIU Wenjin, WANG Hongning, CHEN Ruoyu. Synthesis of Mixed Alumina Silica Pillared Zirconium Phosphate and Its Catalytic Performance in Epoxidation of Soyate† [J]. Chem. J. Chinese Universities, 2015, 36(12): 2550. |
[13] | XU Peng, LI Youji, LIU Chen, LI Ming, DENG Ruicheng. Preparation and Visible-light Photocatalytic Performance of Mesoporous Vanadium-doped Titania† [J]. Chem. J. Chinese Universities, 2014, 35(9): 1954. |
[14] | LIU Chao, ZHUO Xin, ZHANG Hu, LIU Xinhua. Synthesis, Crystal Structure and Catalytic Performance of Zinc Complex Containing 2-(Aminomethyl)pyridine Ligand† [J]. Chem. J. Chinese Universities, 2014, 35(5): 928. |
[15] | LI Qiaoxia, MAO Hongmin, ZHU Pingping, CAO Xiaolu, LU Tianhong, XU Qunjie. Electrocatalytic Performance of Pd-Sn/C Catalyst Prepared with Different Complexants for Ethanol Oxidation in Alkaline Solution† [J]. Chem. J. Chinese Universities, 2014, 35(3): 602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||