Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (10): 20220215.doi: 10.7503/cjcu20220215
• Article: Inorganic Chemistry • Previous Articles Next Articles
ZHANG Taiwen1, GUO Jun1,2(), ZHANG Dan2, YUAN Changmei1, QIU Shuangyan1
Received:
2022-04-05
Online:
2022-10-10
Published:
2022-06-21
Contact:
GUO Jun
E-mail:justin_gixt@163. com
Supported by:
CLC Number:
TrendMD:
ZHANG Taiwen, GUO Jun, ZHANG Dan, YUAN Changmei, QIU Shuangyan. Synthesis, Characterization and Catalytic Oxidation Iodine Ion Performance of trz-Cl-Cu-PMo12[J]. Chem. J. Chinese Universities, 2022, 43(10): 20220215.
Element | Area | Content(%) | |
---|---|---|---|
Measured | Theoretical | ||
N | 10069 | 10.60 | 10.62 |
H | 1173 | 0.597 | 0.51 |
C | 4307 | 6.26 | 6.07 |
Table 1 Elemental analysis data of trz-Cl-Cu-PMo12
Element | Area | Content(%) | |
---|---|---|---|
Measured | Theoretical | ||
N | 10069 | 10.60 | 10.62 |
H | 1173 | 0.597 | 0.51 |
C | 4307 | 6.26 | 6.07 |
Empirical formula | C16H16ClCu12Mo12N24O40P | γ/(°) | 90 |
---|---|---|---|
Formula weight | 3164.71 | V/nm3 | 6.2011(13) |
Crystal size/mm3 | 0.11×0.1×0.08 | Z | 4 |
Crystal system | Monoclinal | μ/mm-1 | 6.529 |
Space group | C2/c | F(000) | 5936.0 |
a/nm | 2.4664(3) | θ range/(°) | 3.904—50.018 |
b/nm | 1.45386(18) | λ | 0.071073 |
c/nm | 1.7353(2) | Dx /(g·cm-3) | 3.390 |
α/(°) | 90 | R1, wR2[I≥2σ(I)] | 0.1433, 0.3362 |
β/(°) | 94.737(4) | R1, wR2(all data) | 0.1516, 0.3412 |
Table 2 Crystallographic data and refinement parameters for compound
Empirical formula | C16H16ClCu12Mo12N24O40P | γ/(°) | 90 |
---|---|---|---|
Formula weight | 3164.71 | V/nm3 | 6.2011(13) |
Crystal size/mm3 | 0.11×0.1×0.08 | Z | 4 |
Crystal system | Monoclinal | μ/mm-1 | 6.529 |
Space group | C2/c | F(000) | 5936.0 |
a/nm | 2.4664(3) | θ range/(°) | 3.904—50.018 |
b/nm | 1.45386(18) | λ | 0.071073 |
c/nm | 1.7353(2) | Dx /(g·cm-3) | 3.390 |
α/(°) | 90 | R1, wR2[I≥2σ(I)] | 0.1433, 0.3362 |
β/(°) | 94.737(4) | R1, wR2(all data) | 0.1516, 0.3412 |
Bond | Length/nm | Bond | Length/nm |
---|---|---|---|
Cu1—N1 | 0.192(3) | Cu4—N5 | 0.190(4) |
Cu1—N8 | 0.192(3) | Cu4—N7 | 0.189(3) |
Cu1—Ob1 | 0.261(3) | Cu4—Od2 | 0.270(3) |
Cu1—Cl1 Cu2—N3 | 0.2820 0.182(3) | Cu4—Od3 | 0.278(3) |
Cu5—N11 | 0.190(3) | ||
Cu2—N4 | 0.185(3) | Cu5—N2 | 0.190(3) |
Cu2—Od1 | 0.262(3) | Cu5—Cl1 | 0.2578 |
Cu3—N6 | 0.193(3) | Cu6—N9 | 0.185(3) |
Cu3—N10 | 0.187(3) | Cu6—N12 | 0.188(3) |
Table 3 Partial bond length data of compounds
Bond | Length/nm | Bond | Length/nm |
---|---|---|---|
Cu1—N1 | 0.192(3) | Cu4—N5 | 0.190(4) |
Cu1—N8 | 0.192(3) | Cu4—N7 | 0.189(3) |
Cu1—Ob1 | 0.261(3) | Cu4—Od2 | 0.270(3) |
Cu1—Cl1 Cu2—N3 | 0.2820 0.182(3) | Cu4—Od3 | 0.278(3) |
Cu5—N11 | 0.190(3) | ||
Cu2—N4 | 0.185(3) | Cu5—N2 | 0.190(3) |
Cu2—Od1 | 0.262(3) | Cu5—Cl1 | 0.2578 |
Cu3—N6 | 0.193(3) | Cu6—N9 | 0.185(3) |
Cu3—N10 | 0.187(3) | Cu6—N12 | 0.188(3) |
Bond | Angle/(°) | Bond | Angle/(°) |
---|---|---|---|
N1—Cu1—Ob1 | 85.656 | Cu3—Od2—Cu4 | 88.614 |
N1—Cu1—N8 | 159.635 | N5—Cu4—N7 | 162.356 |
N1—Cu1—Cl1 | 95.411 | N5—Cu4—Od2 | 84.079 |
N8—Cu1—Cl1 | 104.916 | N7—Cu4—Od2 | 110.280 |
N8—Cu1—Ob | 188.607 | N5—Cu4—Od3 | 81.709 |
Cl1—Cu1—Ob1 | 109.681 | Od2—Cu4—Od3 | 165.705 |
N3—Cu2—N4 | 177.004 | N2—Cu5—N11 | 153.692 |
N3—Cu2—Od1 | 95.462 | N2—Cu5—Cl1 | 101.041 |
N4—Cu2—Od1 | 87.277 | N11—Cu5—Cl1 | 105.217 |
N6—Cu3—N10 | 157.987 | Cu5—Cl1—Cu1 | 81.208 |
N6—Cu3—Od2 | 88.791 | N9—Cu6—N12 | 176.620 |
Table 4 Partial bond angle data of compounds
Bond | Angle/(°) | Bond | Angle/(°) |
---|---|---|---|
N1—Cu1—Ob1 | 85.656 | Cu3—Od2—Cu4 | 88.614 |
N1—Cu1—N8 | 159.635 | N5—Cu4—N7 | 162.356 |
N1—Cu1—Cl1 | 95.411 | N5—Cu4—Od2 | 84.079 |
N8—Cu1—Cl1 | 104.916 | N7—Cu4—Od2 | 110.280 |
N8—Cu1—Ob | 188.607 | N5—Cu4—Od3 | 81.709 |
Cl1—Cu1—Ob1 | 109.681 | Od2—Cu4—Od3 | 165.705 |
N3—Cu2—N4 | 177.004 | N2—Cu5—N11 | 153.692 |
N3—Cu2—Od1 | 95.462 | N2—Cu5—Cl1 | 101.041 |
N4—Cu2—Od1 | 87.277 | N11—Cu5—Cl1 | 105.217 |
N6—Cu3—N10 | 157.987 | Cu5—Cl1—Cu1 | 81.208 |
N6—Cu3—Od2 | 88.791 | N9—Cu6—N12 | 176.620 |
50 | Zhao S. N., Synthesis, Structure and Characterization of Polyoxometalates Modified by Metal⁃organic Complexes, Wuhan University of Technology, Wuhan, 2010 |
赵胜能. 金属⁃有机配合物修饰的多金属氧酸盐的合成, 结构和表征, 武汉: 武汉理工大学, 2010 | |
51 | Tang R. Z., Chen T., Wang G. Y., Chem. Ind. End. Prog., 2013, 11(2), 551—558 |
52 | Brown I. D., Altermatt. D., Acta Crystallogr B, 1985, 41(4), 244—247 |
53 | Chen X. H., Xue A., Yang S. Z., Liu H., Chin. J. Process Eng., 2009, 9(S1), 181—184 |
陈肖虎, 薛安, 杨善志, 刘辉. 过程工程学报, 2009, 9(S1), 181—184 | |
54 | Qin Y. X., Song F. H., Ai Z. H., EST., 2015, 49(13), 7948—7956 |
55 | Cai L. L., Study on the Performance and Mechanism of Molybdenum⁃containing Polyoxometalates as Catalysts for Hydrogen Peroxide Oxidation of Iodide Ions, Guizhou Normal University, Guiyang, 2020 |
蔡丽丽. 含钼多金属氧酸盐催化过氧化氢氧化碘离子性能与机理研究, 贵阳: 贵州师范大学, 2020 | |
56 | Song S. W., Hidaja K., Kawi S., Langmuir, 2005, 21(21), 9568—9575 |
57 | Zhang Y. J., Preparation and Characterization of Transition Metal⁃substituted Keggin⁃type Heteropolymolybdate Catalysts and Their Application in Catalytic Deep Desulfurization, Northwestern University, Xi'an, 2017 |
张燕杰. 过渡金属取代的Keggin型杂多钼酸盐催化剂的制备、 表征及其在催化深度脱硫中的研究, 西安: 西北大学, 2017 | |
58 | Wang X. B., Design and Synthesis of a New Type of Polyoxometalate Catalyst and Study on Its Catalytic Performance for Hydrogen Peroxide Oxidation of Starch, Northeast Normal University, Changchun, 2017 |
王晓波. 新型多金属氧酸盐催化剂的设计合成及催化过氧化氢氧化淀粉性能的研究, 长春: 东北师范大学, 2017 | |
1 | Ewa P., Aneta K. Renata B. K., Miros P., Joanna K. D., Agnieszka K. A., Sylwester S., Ukasz S., Iwona L. S. Roksana R., PloS One, 2016, 11(4), e0152680 |
2 | Fuse Y., PER., 2017, 14, 1(1), 260—270 |
3 | Lv F., Si W., Zhang W., Ma W. Q., Wang G. J., Hu G. P., Liu J., Zhang Q., Sun C. P., Chin. Med. J.(Engl)., 2019, 29(4), 65—68 |
吕芳, 司玮, 张伟, 马维青, 王国娟, 胡国平, 刘皆, 张强, 孙春萍. 中国现代医学杂志, 2019, 29(4), 65—68 | |
4 | Madhu S., Evans H. A., Doan⁃Nguyen V. T., Labram J. G., Wu G., Chabinyc M. L., Seshadri R., Wudl F., Angew. Chem. Int. Ed., 2016, 5(28), 8135 |
5 | Yuan C. M., Guo J., Zhang D., Zhang T. W., Inorganic Salt Industry, doi:10.19964/j.issn.1006⁃4990.2021⁃0703 |
袁常梅, 郭军, 张丹, 张太文. 无机盐工业, doi:10.19964/j.issn.1006—4990.2021—0703 | |
6 | Schreiber M., Vivekanandhan S., Mohanty A. K., Misra M., ACS. Sustain. Chem. Eng., 2015, 3(1), 33—41 |
7 | Chen W. L., Wang E. B., Introduction to Polyacid Chemistry, Science Press, Beijing, 2013 |
陈维林, 王恩波. 多酸化学导论. 北京: 科学出版社, 2013 | |
8 | Wang B., Wu Y. G., Liu Z. L., Wang X. H., An Z. H., Zeng J., Yang P., Liu Z. R., Chem. J. Chinese Universities, 2018, 39(5), 1003—1008 |
王斌, 乌英嘎, 刘哲林, 王晓红, 安智华, 曾俊, 杨鹏, 刘宗瑞. 高等学校化学学报, 2018, 39(5), 1003—1008 | |
9 | Liang Y., Liu H., Gong L. G., Wang C. X., Wang C. M., Yu K., Zhou B. B., Chem. J. Chinese Universities, 2022, 43(1), 42—50 |
梁宇, 刘欢, 宫丽阁, 王春晓, 王春梅, 于凯, 周百斌. 高等学校化学学报, 2022, 43(1), 42—50 | |
10 | Chen H. N., Li X. X., Zheng S. T., Chem. J. Chinese Universities, 2022, 43(1), 148—169 |
陈慧娜, 李新雄, 郑寿添. 高等学校化学学报, 2022, 43(1), 148—169 | |
11 | Yang X. L., Xie X. Y., Li S. Q., Zhang W. X., Zhang X. D., Chai H. X., Huang Y. M., J. Hazard Mater., 2021, 419, 126360 |
12 | Liu X. Y., Huang J. Y., Sun J. H., Ning P., Liu J. C., Chem. Res., 2022, 33(2), 170—180 |
刘肖依, 黄洁云, 孙嘉慧, 宁攀, 刘建彩. 化学研究, 2022, 33(2), 170—180 | |
13 | Zhang M., Li H. J., Zhang J. H., Lv H. J., Yang G. Y., Chinese J. Catal., 2021, 42(6), 855—871 |
张默, 李慧杰, 张峻豪, 吕红金, 杨国昱. 催化学报, 2021, 42(6), 855—871 | |
14 | Song F. Y., Ding Y., Zhao C. C., Acta. Chem., 2014, 72(2), 133—144 |
宋芳源, 丁勇, 赵崇超. 化学学报, 2014, 72(2), 133—144 | |
15 | Chu M. Y., Li F. B., Gao N., Yang Xi., Yu T. T., Ma H. Y., Yang G. X., Pang H. J., Chem. J. Chinese Universities, 2022, 43(1), 95—104 |
初明月, 李峰博, 高宁, 杨昕, 于婷婷, 马慧媛, 杨桂欣, 庞海军. 高等学校化学学报, 2022, 43(1), 95—104 | |
16 | Feng Y. Q., Qin L., Zhang J. H., Fu F. Y., Li H. J., Xiang H., Lv H. J., Chinese J. Catal., 2022, 43(2), 442—450 |
冯业芹, 秦琳, 张峻豪, 符方玉, 李慧杰, 相华, 吕红金. 催化学报, 2022, 43(2), 442—450 | |
17 | Du J., Ma Y. Y., Tan H. Q, Kang Z. H., Li Y. G., Chinese J. Catal., 2021, 42(6), 920—937 |
都京, 马媛媛, 谭华桥, 康振辉, 李阳光. 催化学报, 2021, 42(06), 920—937 | |
18 | Liu Y. F., Lv Y., Li R. Q., Zuo P., Wang R. X., Jounal Functional Polymers, 2020, 33(6), 580—588 |
刘叶峰, 吕迎, 李瑞琪, 左鹏, 王蕊欣. 功能高分子学报, 2020, 33(6), 580—588 | |
19 | Liu Y. Y., Zhang H. M., Wang X. R, Ding B., Liu Z. Y., Ding B., Acta Inorg. Chem., 2018, 34(4), 791—799 |
刘媛媛, 张慧敏, 王鑫蕊, 丁波, 刘正宇, 丁斌. 无机化学学报, 2018, 34(4), 791—799 | |
20 | Dong Y. Y., Zhang J., Yang Y. L., Wang J. Q., Hu B. Y., Wang W., Cao W., Gai S., Xia D. B., Lin K. F., Fan R. Q., Nano. Energy, 2022, 97, 107184 |
21 | Hugo C., Ana L. P., Joao C. L., Luis C., Sandra G., Mater. Lett., X., 2019 |
22 | Zheng Y. G., Xue W., Inorg. Chem. Commun., 2022, 141, 109520 |
23 | Zhao M., Fang Y., Ma L. H., Zhu X. Y., Jiang L., Li M. X., Han Q. X., J. Inorg. Biochem., 2020, 210, 111131 |
24 | Zhang Y., Lü H., Wang L., Zhang Y. L., Liu P., Han H. X., Jiang Z. X., Li C., J. Mol. Catal. A: Chem., 2010, 332(1/2), 59—64 |
25 | Rezvani M. A., Oveisi M., Asli M. A., J. Mol. Catal., 2015, 410, 121—132 |
26 | Bai X. L., Huang X., Liang W., Song N. Z., Zhang J., Zhang Y., Xiang Y., Zhao Y., JCSCC, 2019, 55(25), 3598—3601 |
27 | Guo J., Feng X., Zhang D., Yuan C. M., Chem. Res. Appl., 2021, 33(9), 1706—1711 |
郭军, 冯潇, 张丹, 袁常梅. 化学研究与应用, 2021, 33(9), 1706—1711 | |
28 | Yan X., Qu H. M, Chang Y., Duan X. X., Acta. Chem., 2022, doi:10.6023/A22030134 |
闫续, 屈贺幂, 常烨, 段学欣. 化学学报, 2022, doi:10.6023/A22030134 | |
29 | Li R., Dou Y. X., Shu Y., Chen X. X., Gao Y., J. Funct. Mater., 2022, 53(5), 5009—5025 |
李荣, 窦元鑫, 舒月, 陈绪兴, 高云. 功能材料, 2022, 53(5), 5009—5025 | |
30 | Sun Q. H., Zhu K., Ji X. L., Chen D. D., Han C., Li T. T., Hu Y., Huang S. M., Qian J. J., Science China: Materials, 2022, 65(6), 1453—1462(孙秋红, 朱楷, 季湘丽, 陈丹丹, 韩承, 黎挺挺, 胡悦, 黄少铭, 钱金杰. 中国科学: 材料), 2022, 65(6), 1453—1462 |
31 | Wang L. L, Li X., Hao L. D., Hong S., Alex W. Robertson, Sun Z. Y., Chinese J. Catal., 2022, 43(4), 1049—1057 |
王琳琳,李欣,郝磊端,洪崧, Alex W. Robertson,孙振宇. 催化学报, 2022, 43(4), 1049—1057 | |
32 | Qin C., Wang B., Wang Y. D., Acta. Inorg. Chem., 2022, 38(3), 377—398 |
秦聪, 王兵, 王应德. 无机化学学报, 2022, 38(3), 377—398 | |
33 | Li H. L, Shen S. S, Wu Y., Zhang G. W., Bai R. B., J. Funct. Mater., 2022, 53(4), 4028—4038 |
李红林, 沈舒苏, 吴逸, 张干伟, 白仁碧. 功能材料, 2022, 53(4), 4028—4038 | |
34 | Fan Y., Hou B., Chem. World, 2022, 63(3), 178—184 |
范艳, 侯博. 化学世界, 2022, 63(3), 178—184 | |
35 | Miriam D., Georgeena M., Masakazu A., Bernaurdshaw N., Coordin. Chem. Rev., 2022, 468, 214627 |
36 | Liu Y., Qiu G. Y., Liu Y. F., Niu Y. Z., Qu R. J., Ji C. N., Wang Y., Zhang Y., Sun C. M., J. Mol. Liq., 2022, 360, 119405 |
37 | Li M. Z., Wang T., Zhao M. Y., Wang Y., Int. J. Hydrogen Energ., 2022, 47, 15357e15369 |
38 | Li S. R., Wang L., Chen Y. Z., Jiang H. L., Chem. J. Chinese Universities, 2022, 43(1), 70—83 |
李淑蓉, 王琳, 陈玉贞, 江海龙. 高等学校化学学报, 2022, 43(1), 70—83 | |
39 | Liu D. S., Chen W. T., Ye G. M., Liu J. Q., Sui Y., Inorg. Chim. Acta, 2018, 477, 84—88 |
40 | Sha J. Q., Peng J., Tian A. X., Liu H. S., Chen J., Zhang P. P., Su Z. M., Cryst. Growth DES., 2007, 7(12), 2535—2541 |
41 | Zhao J., Guo Q. Q., Zheng Y. G., Long W. R., Tian H. X., Wang Z. Y., Shi Z. Y., J. Synthetic Cryst., 2020, 49(3), 500 |
赵婕, 郭晴晴, 郑玉国, 龙魏然, 田红霞, 王真玉, 史振雨. 人工晶体学报, 2020, 49(3), 500 | |
42 | Li S. Z., Huo F. W., Nanoscale, 2015, 7, 482—7501 |
43 | Chughtai A. H., Ahmad N., Younus H. A., Laypkov A., Verpoort F., Chem. Soc. Rev., 2015, 44, 6804—6849 |
44 | Bloch E. D., Queen W. L., Krishna R., Zadrozny J. M., Brown C. M., Long J. R., Sci., 2012, 335, 1606—1610 |
45 | Wang M. L., Controlled Synthesis and Electrochemical Properties of Heteropolyacid Modified MIL⁃88A(Fe)Microrods, Jinan University, Jinan, 2021 |
王明亮. 杂多酸修饰MIL⁃88A(Fe)微米棒的控制合成及电化学性能研究, 济南: 济南大学, 2021 | |
46 | Zhang C. J., Sun Y., Zhen Q. F., Liu X., Ma S., Pang H. J., Journal of Hebei Normal University(Natural Science Edition), 2021, 45(3), 270—274 |
张春晶, 孙雨, 甄庆芳, 刘校, 马爽, 庞海军. 河北师范大学学报(自然科学版), 2021, 45(3), 270—274 | |
47 | Xu L. L., Study on Polyacid⁃based Metal⁃organic Framework Materials and Their Catalytic Oxidative Desulfurization Performance, University of Science and Technology of China, Hefei, 2019 |
徐丽丽. 多酸基金属有机骨架材料及其催化氧化脱硫性能研究, 合肥: 中国科学技术大学, 2019 | |
48 | Feng Li., Shao L. X., Li S. J., Quan W. X., Zhuang J. L., Chem. J. Chinese Universities, 2022, 43(4), 20210867 |
冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 高等学校化学学报, 2022, 43(4), 202108672 | |
49 | Tang J., Qin H., J. Mol. Sci., 2012, 6(28), 47—53 |
唐晶, 秦华. 分子科学学报, 2012, 6(28), 47—53 |
[1] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[2] | WEI Zheyu, WU Zhikang, RU Shi, NI Lubin, WEI Yongge. Research Progress of Polyoxometalates-Cyclodextrin Supramolecular System [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210665. |
[3] | MA Mengmeng, QU Xiaogang. Recent Advances on Polyoxometalates as Metallodrug Agents for Alzheimer’s Disease [J]. Chem. J. Chinese Universities, 2020, 41(5): 884. |
[4] | ZHANG Ronghui, MIN Deng, WANG Lailai, XIE Wenjian. Research Progress of Catalysts for Gas-phase Fluorination to Synthesize Hydorfluoroolefins† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2199. |
[5] |
WANG Bin,WANG Xiaohong,DUAN Limei,XU Liang,ZHAO Peng,JIAN Jinpeng,LIU Zongrui.
Spectral Detection for Vitamin C and H2O2 Based on the Reversible Color Change and Luminescent Switching Properties of P2Mo18 |
[6] | MA Qinghai,CUI Fang,LIU Mufei,XU linxu,ZHANG Jiajia,CUI Tieyu. Synthesis and Catalytic Performance of Pd/PdO Nanocomposite Microspheres [J]. Chem. J. Chinese Universities, 2019, 40(10): 2041. |
[7] | XIAO Shanshan, OUYANG Yiting, LI Xiaoyun, WANG Zhao, WU Pan, DENG Zhao, CHEN Lihua, SU Baolian. Synthesis of a Core-shell Structured Ag/ZIF-8 Catalyst with Mesoporous Silica Shell† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1235. |
[8] | YANG Ziwei, ZHOU Shunli, WANG Rui, WANG Feng, JIANG Yan, ZHANG Xiuqin. Preparation and Characterization of Self-cleaning Cotton Fabric† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1880. |
[9] | ZHANG Yanping,YANG Chunhui,CHEN Pan,RAN Tangchun,LI Jiao,YIN Yongxiang. Activity of Catalysts Reduced by Plasma in CO2 Methanation† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1521. |
[10] | WANG Huichun, WANG Fachun, LI Baolin. Preparation of Cyclodextrin-based Mesoporous Carbon and Its Catalytic Performance† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2076. |
[11] | CAO Xiaolu, WANG Longlong, WANG Yajun, XU Qunjie, LI Qiaoxia. Facile Preparation of Amino-modified Pd/TiO2/C Nanocatalyst and Its Electrocatalytic Performance for Ethanol Oxidation in Alkaline Solution† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1187. |
[12] | LIU Chao, ZHUO Xin, CHENG Hui, LIU Chuang, LIU Xinhua. Synthesis, Crystal Structure and Homogeneous Catalytic Performance of Zinc Complex Based on Diethylenetriamine Ligand† [J]. Chem. J. Chinese Universities, 2015, 36(5): 831. |
[13] | LIU Wenjin, WANG Hongning, CHEN Ruoyu. Synthesis of Mixed Alumina Silica Pillared Zirconium Phosphate and Its Catalytic Performance in Epoxidation of Soyate† [J]. Chem. J. Chinese Universities, 2015, 36(12): 2550. |
[14] | XU Peng, LI Youji, LIU Chen, LI Ming, DENG Ruicheng. Preparation and Visible-light Photocatalytic Performance of Mesoporous Vanadium-doped Titania† [J]. Chem. J. Chinese Universities, 2014, 35(9): 1954. |
[15] | LIU Chao, ZHUO Xin, ZHANG Hu, LIU Xinhua. Synthesis, Crystal Structure and Catalytic Performance of Zinc Complex Containing 2-(Aminomethyl)pyridine Ligand† [J]. Chem. J. Chinese Universities, 2014, 35(5): 928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||