Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (10): 3005.doi: 10.7503/cjcu20210511
• Review • Previous Articles Next Articles
YE Yihua1, BA Deliang2, LIU Shuailei1, CHEN Yinglin1, LI Yuanyuan2(), LIU Jinping1()
Received:
2021-07-16
Online:
2021-10-10
Published:
2021-10-10
Contact:
LI Yuanyuan
E-mail:liyynano@hust.edu.cn;liujp@whut.edu.cn
Supported by:
CLC Number:
TrendMD:
YE Yihua, BA Deliang, LIU Shuailei, CHEN Yinglin, LI Yuanyuan, LIU Jinping. Recent Progress on High⁃rate Niobium-based Oxides Anode Materials[J]. Chem. J. Chinese Universities, 2021, 42(10): 3005.
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
---|---|---|---|---|---|---|---|---|
Nb2O5 nanobelts | Morphology and microstructure design | Solvothermal | — | 1.0—3.0 | 209.3@0.5C | 108.8@10C | 77.7%(200) @5C | [ |
Nb2O5 nanoflakes | Morphology and microstructure design | Template | — | 1.0—2.5 | 179@0.2C | 82@20C | 62%(1000) @5C | [ |
3DOM?Nb2O5 | Morphology and microstructure design | Template | — | 1.0—3.0 | 205@0.5C | 77@50C | 90%(100) @10C | [ |
Mesoporous T?Nb2O5 nanofibers | Morphology and microstructure design | Electrospinning | 1.5 | 1.0—2.6 | 190@0.05 A/g | 70@5 A/g | 84%(5000) @3 A/g | [ |
HM? Nb2O5 nanospheres | Morphology and microstructure design | Coordination? assisted precipitation | 1.0—1.5 | 1.0—3.0 | 195@1C | 125@50C | 86.2%(2000) @1C | [ |
T?Nb2O5 nanoparticles | Morphology and microstructure design | Sol?gel | — | 1.0—3.0 | 253@0.5C | 130@100C | 93.3%(4000) @25C | [ |
Nb2O5 nanoparticles | Morphology and microstructure design | Hydrothermal | 0.1—2.1 | 0.05—3.0 | 190@0.25C | 43@50C | 98.6%(800) @2.5C | [ |
Nb2O5 microspheres | Morphology and microstructure design | Solvothermal | — | 1.0—3.0 | 164@1C | 98.5@10C | 96.2%(500) @5C | [ |
Carbon?encapsulated T?Nb2O5 nanocrystals | Conductive?phase compositing | Solvothermal | 1.1—1.5 | 1.0—3.0 | 192@0.5C | 90@100C | 88%(1000) @5C | [ |
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
Nb2O5 @C core?shell nanocrystals | Conductive?phase compositing | Template | 0.9—1.1 | 1.1—3.0 | 180@0.05 A/g | 90@5 A/g | ― | [ |
Ag?1D T?Nb2O5 | Conductive?phase compositing | Electrospinning | 1.5 | 1.0—2.6 | 189.9@0.05 A/g | 103.6@5 A/g | 99.8%(200) @0.5 A/g | [ |
Nb2O5 ?MWCNT | Conductive?phase compositing | Hydrothermal | 1.8 | 1.0—3.0 | 188.3@0.2C | 75.1@20C | 96.2%(50) @0.2C | [ |
T?Nb2O5 /NG | Conductive?phase compositing | Hydrothermal | 1.0—3.0 | 1.0—3.0 | 164@0.5C | 90@100C | 70%(20000) @50C | [ |
T?Nb2O5 /graphene | Conductive?phase compositing | Hydrothermal | — | 1.0—3.0 | 626 C/g@ 1 A/g | 220 C/g@50 A/g | — | [ |
T?Nb2O5 nanorod film | Array/free?standing design | Hydrothermal | 1.5—2.0 | 1.0—3.0 | 220@0.5C | 160@20C | 85%(2500) @10C | [ |
T?Nb2O5/rGO nanohybrids | Conductive?phase compositing | Solvothermal | 1.6 | 1.1—3.0 | 227@0.1C | 80@10C | 72.6%(100) @0.5C | [ |
Ni/T?Nb2O5@Carbon nanofibers | Conductive?phase compositing | Electrospinning | 0.35—0.5 | 0.01—3.0 | 643@0.2 A/g | 227@10 A/g | 76.2%(1400) @10 A/g | [ |
T?Nb2O5/3D Holey GO framework | Conductive?phase compositing | Solvothermal | 1—11 | 1.1—3.0 | 184@1C | 100@100C | 90%(10000) @10C | [ |
Free?standing T?Nb2O5 /Graphene composite papers | Array/free?standing design | Solvothermal | 0.8—1.3 | 0.8—3.0 | 990 F/cm3@5C | 526 F/cm3@100C | 94.8%(1700) @5C | [ |
Al0.5Nb24.5O62 | Doping | Solvothermal | 1.5 | 0.8—3.0 | 321@0.1C | 192@10C | 90.0%(500) @10C | [ |
FeNb11O29 nanotubes | Doping | Electrospinning | — | 1.0—3.0 | 302@0.1C | 53.36@50C | 71.4%(2000) @10C | [ |
Cr0.5Nb24.5O62 nanowires | Doping | Electrospinning | — | 0.8—3.0 | 344@0.1C | 209@30C | 92.8%(2000) @10C | [ |
CrNb11O29 nanorods | Doping | Hydrothermal | — | 0.8—3.0 | 307@0.5C | 228@10C | 91.1%(400) @10C | [ |
Mg2Nb34O87 porous microspheres | Doping | Solvothermal | — | 0.8—3.0 | 338@0.1C | 230@10C | 93.1%(500) @10C | [ |
ZrNb24O62 nanowires | Doping | Solvothermal | 1.4 | 0.8—3.0 | 320@0.1C | 182@30C | 90.2%(1500) @10C | [ |
GaNb11O29 nanowires | Doping | Electrospinning | 1.8 | 1.0—3.0 | 233@0.1 A/g | 169@0.7 A/g | 97%(500) @ 0.7 A/g | [ |
MoNb12O33 microspheres | Doping | Solvothermal | 1.0 | 0.8—3.0 | 321@0.1C | 200@10C | 95.7%(1000) @10C | [ |
Nb16W5O55 | Doping | Solid?state reaction | 2.0—3.0 | 1.0—3.0 | 225@0.2C | 70@100C | 95%(750) @20C | [ |
Nb14W3O44 | Doping | Solution combustion | 1.4—1.7 | 1.0—3.0 | 249@0.5C | 84.4@50C | 96.5%(4000) @10C | [ |
Nb8W9O47 nanofibers | Doping | Electrospinning | — | 1.0—3.0 | 196@1C | 147@5C | 78%(1000) @5C | [ |
Mo3Nb14O44 nanowires | Doping | Electrospinning | — | 0.8—3.0 | 321@0.1C | 174@10C | 75.8%(1000) @5C | [ |
3DOM?TiNb2O7 | Morphology and microstructure design | Template | 1.5 | 1.0—3.0 | 251@1C | 99@100C | 82%(1000) @10C | [ |
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
Hollow Ti2Nb10O29 microspheres | Morphology and microstructure design | Hydrothermal | 1.0—1.5 | 1.0—3.0 | 219.8@0.2C | 173.4@10C | 95%(500) @10C | [ |
TiNb2O7 nanorods | Morphology and microstructure design | Sol?gel | — | 1.0—3.0 | 265@0.1C | 84@50C | 68.4%(500) @10C | [ |
TiNb6O17/C nanoparticles | Conductive?phase compositing | Sol?gel | 1.5 | 1.0—3.0 | 275@1C | 132@30C | 92%(500) @10C | [ |
N?TiNb2O7@C nanoparticles | Conductive?phase compositing | Solid?state reaction | — | 1.0—3.0 | 268@1C | 135@50C | 82.7%(10000)@20C | [ |
Ti2Nb10O29/Ag composite | Conductive?phase compositing | Solid?state reaction and solvothermal | — | 1.0—2.5 | 282@0.2C | 132@20C | 82.1%(500) @10C | [ |
3D TiNb2O7 nanorod | Array/free?standing design | Hydrothermal | 2.0—2.5 | 1.0—3.0 | 240@0.5C | 151@40C | 86.4%(2000) @10C | [ |
Carbon?coated TiNb2O7 nanosheet | Array/free?standing design | Solvothermal | 5.8 | 1.0—3.0 | 250@1C | 96@30C | 87.8%(2000) @5C | [ |
Ti2Nb10O29@TiC/C nanoarray | Array/free?standing design | Chemical vapor deposition and solvothermal | 1.8 | 1.0—2.5 | 318@1C | 202@50C | 85%(10000) @10C | [ |
Ti2Nb10O29@TiC/ C?NC nanoarray | Array/free?standing design | Chemical vapor deposition and electrodeposition | 0.8 | 1.0—2.5 | 320@1C | 165@100C | 65%(10000) @10C | [ |
Ru0.01Ti0.99Nb2O7 micron?particles | Doping | Solid?state reaction | 1.0 | 0.8—3.0 | 295@0.1C | 181@5C | 90.1%(100) @5C | [ |
Cu0.02Ti0.94Nb2.04O7 micron?particles | Doping | Solid?state reaction | 1.0—2.0 | 0.8—3.0 | 315@0.1C | 182@10C | 98.8%(1000) @5C | [ |
TiNb1.98V0.02O7 | Doping | Solid?state reaction | 2.6—2.7 | 1.0—3.0 | 260@0.3C | 172@10C | 65.6%(30) @5C | [ |
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
---|---|---|---|---|---|---|---|---|
Nb2O5 nanobelts | Morphology and microstructure design | Solvothermal | — | 1.0—3.0 | 209.3@0.5C | 108.8@10C | 77.7%(200) @5C | [ |
Nb2O5 nanoflakes | Morphology and microstructure design | Template | — | 1.0—2.5 | 179@0.2C | 82@20C | 62%(1000) @5C | [ |
3DOM?Nb2O5 | Morphology and microstructure design | Template | — | 1.0—3.0 | 205@0.5C | 77@50C | 90%(100) @10C | [ |
Mesoporous T?Nb2O5 nanofibers | Morphology and microstructure design | Electrospinning | 1.5 | 1.0—2.6 | 190@0.05 A/g | 70@5 A/g | 84%(5000) @3 A/g | [ |
HM? Nb2O5 nanospheres | Morphology and microstructure design | Coordination? assisted precipitation | 1.0—1.5 | 1.0—3.0 | 195@1C | 125@50C | 86.2%(2000) @1C | [ |
T?Nb2O5 nanoparticles | Morphology and microstructure design | Sol?gel | — | 1.0—3.0 | 253@0.5C | 130@100C | 93.3%(4000) @25C | [ |
Nb2O5 nanoparticles | Morphology and microstructure design | Hydrothermal | 0.1—2.1 | 0.05—3.0 | 190@0.25C | 43@50C | 98.6%(800) @2.5C | [ |
Nb2O5 microspheres | Morphology and microstructure design | Solvothermal | — | 1.0—3.0 | 164@1C | 98.5@10C | 96.2%(500) @5C | [ |
Carbon?encapsulated T?Nb2O5 nanocrystals | Conductive?phase compositing | Solvothermal | 1.1—1.5 | 1.0—3.0 | 192@0.5C | 90@100C | 88%(1000) @5C | [ |
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
Nb2O5 @C core?shell nanocrystals | Conductive?phase compositing | Template | 0.9—1.1 | 1.1—3.0 | 180@0.05 A/g | 90@5 A/g | ― | [ |
Ag?1D T?Nb2O5 | Conductive?phase compositing | Electrospinning | 1.5 | 1.0—2.6 | 189.9@0.05 A/g | 103.6@5 A/g | 99.8%(200) @0.5 A/g | [ |
Nb2O5 ?MWCNT | Conductive?phase compositing | Hydrothermal | 1.8 | 1.0—3.0 | 188.3@0.2C | 75.1@20C | 96.2%(50) @0.2C | [ |
T?Nb2O5 /NG | Conductive?phase compositing | Hydrothermal | 1.0—3.0 | 1.0—3.0 | 164@0.5C | 90@100C | 70%(20000) @50C | [ |
T?Nb2O5 /graphene | Conductive?phase compositing | Hydrothermal | — | 1.0—3.0 | 626 C/g@ 1 A/g | 220 C/g@50 A/g | — | [ |
T?Nb2O5 nanorod film | Array/free?standing design | Hydrothermal | 1.5—2.0 | 1.0—3.0 | 220@0.5C | 160@20C | 85%(2500) @10C | [ |
T?Nb2O5/rGO nanohybrids | Conductive?phase compositing | Solvothermal | 1.6 | 1.1—3.0 | 227@0.1C | 80@10C | 72.6%(100) @0.5C | [ |
Ni/T?Nb2O5@Carbon nanofibers | Conductive?phase compositing | Electrospinning | 0.35—0.5 | 0.01—3.0 | 643@0.2 A/g | 227@10 A/g | 76.2%(1400) @10 A/g | [ |
T?Nb2O5/3D Holey GO framework | Conductive?phase compositing | Solvothermal | 1—11 | 1.1—3.0 | 184@1C | 100@100C | 90%(10000) @10C | [ |
Free?standing T?Nb2O5 /Graphene composite papers | Array/free?standing design | Solvothermal | 0.8—1.3 | 0.8—3.0 | 990 F/cm3@5C | 526 F/cm3@100C | 94.8%(1700) @5C | [ |
Al0.5Nb24.5O62 | Doping | Solvothermal | 1.5 | 0.8—3.0 | 321@0.1C | 192@10C | 90.0%(500) @10C | [ |
FeNb11O29 nanotubes | Doping | Electrospinning | — | 1.0—3.0 | 302@0.1C | 53.36@50C | 71.4%(2000) @10C | [ |
Cr0.5Nb24.5O62 nanowires | Doping | Electrospinning | — | 0.8—3.0 | 344@0.1C | 209@30C | 92.8%(2000) @10C | [ |
CrNb11O29 nanorods | Doping | Hydrothermal | — | 0.8—3.0 | 307@0.5C | 228@10C | 91.1%(400) @10C | [ |
Mg2Nb34O87 porous microspheres | Doping | Solvothermal | — | 0.8—3.0 | 338@0.1C | 230@10C | 93.1%(500) @10C | [ |
ZrNb24O62 nanowires | Doping | Solvothermal | 1.4 | 0.8—3.0 | 320@0.1C | 182@30C | 90.2%(1500) @10C | [ |
GaNb11O29 nanowires | Doping | Electrospinning | 1.8 | 1.0—3.0 | 233@0.1 A/g | 169@0.7 A/g | 97%(500) @ 0.7 A/g | [ |
MoNb12O33 microspheres | Doping | Solvothermal | 1.0 | 0.8—3.0 | 321@0.1C | 200@10C | 95.7%(1000) @10C | [ |
Nb16W5O55 | Doping | Solid?state reaction | 2.0—3.0 | 1.0—3.0 | 225@0.2C | 70@100C | 95%(750) @20C | [ |
Nb14W3O44 | Doping | Solution combustion | 1.4—1.7 | 1.0—3.0 | 249@0.5C | 84.4@50C | 96.5%(4000) @10C | [ |
Nb8W9O47 nanofibers | Doping | Electrospinning | — | 1.0—3.0 | 196@1C | 147@5C | 78%(1000) @5C | [ |
Mo3Nb14O44 nanowires | Doping | Electrospinning | — | 0.8—3.0 | 321@0.1C | 174@10C | 75.8%(1000) @5C | [ |
3DOM?TiNb2O7 | Morphology and microstructure design | Template | 1.5 | 1.0—3.0 | 251@1C | 99@100C | 82%(1000) @10C | [ |
Material | Modification | Synthetic method | Mass loading/ (mg·cm-2) | Potential range/V | Specific capacity/ (mA·h·g-1) | Rate capability/ (mA·h·g-1) | Cycling stability | Ref. |
Hollow Ti2Nb10O29 microspheres | Morphology and microstructure design | Hydrothermal | 1.0—1.5 | 1.0—3.0 | 219.8@0.2C | 173.4@10C | 95%(500) @10C | [ |
TiNb2O7 nanorods | Morphology and microstructure design | Sol?gel | — | 1.0—3.0 | 265@0.1C | 84@50C | 68.4%(500) @10C | [ |
TiNb6O17/C nanoparticles | Conductive?phase compositing | Sol?gel | 1.5 | 1.0—3.0 | 275@1C | 132@30C | 92%(500) @10C | [ |
N?TiNb2O7@C nanoparticles | Conductive?phase compositing | Solid?state reaction | — | 1.0—3.0 | 268@1C | 135@50C | 82.7%(10000)@20C | [ |
Ti2Nb10O29/Ag composite | Conductive?phase compositing | Solid?state reaction and solvothermal | — | 1.0—2.5 | 282@0.2C | 132@20C | 82.1%(500) @10C | [ |
3D TiNb2O7 nanorod | Array/free?standing design | Hydrothermal | 2.0—2.5 | 1.0—3.0 | 240@0.5C | 151@40C | 86.4%(2000) @10C | [ |
Carbon?coated TiNb2O7 nanosheet | Array/free?standing design | Solvothermal | 5.8 | 1.0—3.0 | 250@1C | 96@30C | 87.8%(2000) @5C | [ |
Ti2Nb10O29@TiC/C nanoarray | Array/free?standing design | Chemical vapor deposition and solvothermal | 1.8 | 1.0—2.5 | 318@1C | 202@50C | 85%(10000) @10C | [ |
Ti2Nb10O29@TiC/ C?NC nanoarray | Array/free?standing design | Chemical vapor deposition and electrodeposition | 0.8 | 1.0—2.5 | 320@1C | 165@100C | 65%(10000) @10C | [ |
Ru0.01Ti0.99Nb2O7 micron?particles | Doping | Solid?state reaction | 1.0 | 0.8—3.0 | 295@0.1C | 181@5C | 90.1%(100) @5C | [ |
Cu0.02Ti0.94Nb2.04O7 micron?particles | Doping | Solid?state reaction | 1.0—2.0 | 0.8—3.0 | 315@0.1C | 182@10C | 98.8%(1000) @5C | [ |
TiNb1.98V0.02O7 | Doping | Solid?state reaction | 2.6—2.7 | 1.0—3.0 | 260@0.3C | 172@10C | 65.6%(30) @5C | [ |
36 | Zheng R., Qian S., Cheng X., Yu H., Peng N., Liu T., Zhang J., Xia M., Zhu H., Shu J., Nano Energy, 2019, 58, 399—409 |
37 | Yang C., Yu S., Lin C., Lv F., Wu S., Yang Y., Wang W., Zhu Z. Z., Li J., Wang N., Guo S., ACS Nano, 2017, 11(4), 4217—4224 |
38 | Fu Q., Liu X., Hou J., Pu Y., Lin C., Yang L., Zhu X., Hu L., Lin S., Luo L., Chen Y., J. Power Sources, 2018, 397, 231—239 |
39 | Zhu X., Fu Q., Tang L., Lin C., Xu J., Liang G., Li R., Luo L., Chen Y., ACS Appl. Mater. Inter., 2018, 10(28), 23711—23720 |
40 | Yang C., Zhang Y., Lv F., Lin C., Liu Y., Wang K., Feng J., Wang X., Chen Y., Li J., Guo S., J. Mater. Chem. A, 2017, 5(42), 22297—22304 |
41 | Wang Z., Zheng R., Li Y., Yu H., Liu T., Peng N., Zhang J., Shui M., Shu J., Ceram. Int., 2020, 46(12), 20537—20544 |
42 | Zhu X., Xu J., Luo Y., Fu Q., Liang G., Luo L., Chen Y., Lin C., Zhao X. S., J. Mater. Chem. A, 2019, 7(11), 6522—6532 |
43 | Griffith K. J., Wiaderek K. M., Cibin G., Marbella L. E., Grey C. P., Nature, 2018, 559(7715), 556—563 |
44 | Yang Y., Zhu H., Xiao J., Geng H., Zhang Y., Zhao J., Li G., Wang X. L., Li C. C., Liu Q., Adv. Mater., 2020, 32(12), 1905295 |
45 | Yan L., Cheng X., Yu H., Zhu H., Liu T., Zheng R., Zhang R., Shui M., Shu J., Energy Storage Mater., 2018, 14, 159—168 |
46 | Li Z. H., Feng X. M., Mi L. W., Zheng J. Y., Chen X. Y., Chen W. H., Nano Res., 2018, 11(8), 4038—4048 |
47 | Lou S., Cheng X., Zhao Y., Lushington A., Gao J., Li Q., Zuo P., Wang B., Gao Y., Ma Y., Du C., Yin G., Sun X., Nano Energy, 2017, 34, 15—25 |
48 | Sun Y. G., Sun T. Q., Lin X. J., Tao X. S., Zhang D., Zeng C., Cao A. M., Wan L. J., Sci. China Chem., 2018, 61(6), 670—676 |
49 | Li Z. H., Feng X. M., Mi L. W., Zheng J. Y., Chen X. Y., Chen W. H., Nano Res., 2018, 11(8), 4038—4048 |
50 | Sun R., Tao Y., Sun H., Chen W., Liu G., Yue Y., Hu M., Liu M., J. Mater. Sci., 2019, 54(24), 14825—14833 |
51 | Gao J., Cheng X., Lou S., Wu X., Ding F., Zuo P., Ma Y., Du C., Gao Y., Yin G., J. Alloy. Compd., 2020, 835, 155241 |
52 | Mao W., Liu K., Guo G., Liu G., Bao K., Guo J., Hu M., Wang W., Li B., Zhang K., Qian Y., Electrochim. Acta, 2017, 253, 396—402 |
53 | Deng B., Dong H., Lei T., Yue N., Xiao L., Liu J., Sci. China Mater., 2019, 63(4), 492—504 |
54 | Zhou J., Dong H., Chen Y., Ye Y., Xiao L., Deng B., Liu J., Chem. Commun., 2021, 57(14), 1822—1825 |
55 | Yao Z., Xia X., Zhang Y., Xie D., Ai C., Lin S., Wang Y., Deng S., Shen S., Wang X., Yu Y., Tu J., Nano Energy, 2018, 54, 304—312 |
56 | Yao Z., Xia X., Zhang S., Zhou C., Pan G., Xiong Q., Wang Y., Wang X., Tu J., Energy Storage Mater., 2020, 25, 555—562 |
57 | Lin C., Yu S., Wu S., Lin S., Zhu Z. Z., Li J., Lu L., J. Mater. Chem. A, 2015, 3(16), 8627—8635 |
58 | Wen X., Ma C., Du C., Liu J., Zhang X., Qu D., Tang Z., Electrochim. Acta, 2015, 186, 58—63 |
59 | Yang C., Lin C., Lin S., Chen Y., Li J., J. Power Sources, 2016, 328, 336—344 |
60 | Zhao J. L., Yang M., Yang N. L., Wang J. Y., Wang D., Chem. Res. Chinese Universities, 2020, 36(3), 313—319 |
61 | Barkhordarian G., Klassen T., Bormann R., Scr. Mater., 2003, 49(3), 213—217 |
62 | Nico C., Monteiro T., Graca M. P. F., Prog. Mater. Sci., 2016, 80, 1—37 |
63 | Wang J., Y., Cui Y., Wang D., Nanoscale Horiz., 2020, 5(9), 1287—1292 |
64 | Shen P., Zhang B., Wang Y., Liu X., Yu C., Xu T., Mofarah S. S., Yu Y., Liu Y., Sun H., Arandiyan H., J. Nanostructure Chem., 2020, 11(1), 33—68 |
65 | Zhang C., Maloney R., Lukatskaya M. R., Beidaghi M., Dyatkin B., Perre E., Long D., Qiao W., Dunn B., Gogotsi Y., J. Power Sources, 2015, 274, 121—129 |
66 | Nowak I., Ziolek M., Chem. Rev., 1999, 99(12), 3603—3624 |
67 | Kong L., Cao X., Wang J., Qiao W., Ling L., Long D., J. Power Sources, 2016, 309, 42—49 |
68 | Song Z., Li H., Liu W., Zhang H., Yan J., Tang Y., Huang J., Zhang H., Li X., Adv. Mater., 2020, 32(22), 2001001 |
69 | Griffith K. J., Forse A. C., Griffin J. M., Grey C. P., J. Am. Chem. Soc., 2016, 138(28), 8888—8899 |
70 | Augustyn V., Simon P., Dunn B., Energy Environ. Sci., 2014, 7(5), 1597—1614 |
71 | Chen D., Wang J. H., Chou T. F., Zhao B., El⁃Sayed M. A., Liu M., J. Am. Chem. Soc., 2017, 139(20), 7071—7081 |
72 | Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P. L., Tolbert S. H., Abruna H. D., Simon P., Dunn B., Nat. Mater., 2013, 12(6), 518—522 |
73 | Jiang Y., Liu J., Energy Environ. Mater., 2019, 2(1), 30—37 |
74 | Shi C., Xiang K., Zhu Y., Zhou W., Chen X., Chen H., Ceram. Int., 2017,43, 12388—12395 |
75 | Liu M., Yan C., Zhang Y., Sci. Rep., 2015, 5, 8326 |
76 | Yang H., Xu H., Wang L., Zhang L., Huang Y., Hu X., Chem. Eur. J., 2017, 23(17), 4203—4209 |
77 | Dien L. X., Truong Q. D., Murayama T., Chinh H. D., Taketoshi A., Honma I., Haruta M., Ishida T., Appl. Catal. A: Gen., 2020, 603, 117747 |
78 | Chen Y., Dong H. Y., Li Y. Y., Liu J. P., Acta Phys. Chim. Sin., doi:10.3866/PKU.WHXB202007075(陈瑶, 董浩洋, 李园园, 刘金平. 物理化学学报, doi:10.3866/PKU.WHXB202007075) |
79 | Liu W. Y., Li L. P., Gui Q. Y., Deng B. H., Li Y. Y., Liu J. P., Acta Phys. Chim. Sin., 2020, 36(2), 1904049(刘文燚, 栗林坡, 桂秋月, 邓伯华, 李园园, 刘金平. 物理化学学报, 2020, 36(2), 1904049) |
80 | Lou X., Lin C., Luo Q., Zhao J., Wang B., Shao Q., Guo X., Wang N., Guo Z., ChemElectroChem, 2017, 4(12), 3171—3180 |
81 | Ette P. M., Babu D. B., Roy M. L., Ramesha K., J. Power Sources, 2019, 436, 226850 |
82 | Lee S. Y., Lim A. S., Kwon Y. M., Cho K. Y., Yoon S., Inorg. Chem. Front., 2020, 7(17), 3176—3183 |
83 | Qian S., Yu H., Cheng X., Zheng R., Zhu H., Liu T., Shui M., Xie Y., Shu J., J. Mater. Chem. A, 2018, 6(36), 17389—17400 |
84 | Kocer C. P., Griffith K. J., Grey C. P., Morris A. J., J. Am. Chem. Soc., 2019, 141(38), 15121—15134 |
85 | Chen Z., Cheng X., Long N., Zhu H., Yu H., Ye W., Zheng R., Shui M., Shu J., Ceram. Int., 2018, 44(4), 4080—4087 |
86 | Yan L., Lan H., Yu H., Qian S., Cheng X., Long N., Zhang R., Shui M., Shu J., J. Mater. Chem. A, 2017, 5(19), 8972—8980 |
87 | Ye W., Yu H., Cheng X., Zhu H., Zheng R., Liu T., Long N., Shui M., Shu J., Electrochim. Acta, 2018, 292, 331—338 |
88 | Tian Q., Ye W., Yu H., Cheng X., Zhu H., Long N., Shui M., Shu J., Ceram. Int., 2019, 45(2), 1893—1899 |
89 | Cava R. J., Murphy D. W., Zahurak S. M., J. Electrochem. Soc., 1983, 130(12), 2345 |
90 | Han J. T., Huang Y. H., Goodenough J. B., Chem. Mater., 2011, 23(8), 2027—2029 |
91 | Yu H., Lan H., Yan L., Qian S., Cheng X., Zhu H., Nano Energy, 2017, 38, 109—117 |
92 | Ise K., Morimoto S., Harada Y., Takami N., Solid State Ionics, 2018, 320, 7—15 |
93 | Zhao L., Wang S., Dong Y., Quan W., Han F., Huang Y., Li Y., Liu X., Li M., Zhang Z., Zhang J., Tang Z., Li J., Energy Storage Mater., 2021, 34, 574—581 |
94 | Takami N., Inagaki H., Kishi T., Hoshina K., J. Electrochem. Soc., 2009, 156(2), A128 |
95 | Harada Y., Hoshina K., Inagaki H., Takami N., Electrochim. Acta, 2013, 112, 310—317 |
96 | Takami N., Ise K., Harada Y., Iwasaki T., Kishi T., Hoshina K., J. Power Sources, 2018, 396, 429—436 |
97 | Dong S., Wang Y., Chen C., Shen L., Zhang X., Nanomicro Lett., 2020, 12(1), 1—11 |
98 | Lakhnot A. S., Gupta T., Singh Y., Hundekar P., Jain R., Han F., Koratkar N., Energy Storage Mater., 2020, 27, 506—513 |
1 | Yoshino A., Angew. Chem. Int. Ed., 2012, 51(24), 5798—5800 |
2 | Li H., Han C., Huang Y., Huang Y., Zhu M., Pei Z., Xue Q., Wang Z., Liu Z., Tang Z., Wang Y., Kang F., Li B., Zhi C., Energy Environ. Sci., 2018, 11(4), 941—951 |
99 | Buannic L., Colin J. F., Chapuis M., Chakir M., Patoux S., J. Mater. Chem. A, 2016, 4(29), 11531—11541 |
3 | Wang Z. Q., Sun Y. L., Qian Z. F., Wang R. H., Chem. J. Chinese Universities, 2021, 42(4), 1017—1030(王增强, 孙一翎, 钱正芳, 王任衡. 高等学校化学学报, 2021, 42(4), 1017—1030) |
4 | Zeng X., Li M., Abd El⁃Hady D., Alshitari W., Al⁃Bogami A. S., Lu J., Amine K., Adv. Energy Mater., 2019, 9(27), 1900161 |
5 | Liu D., Zhao Y., Tan R., Tian L. L., Liu Y., Chen H., Pan F., Nano Energy, 2017, 36, 206—212 |
6 | Bi R. Y., Mao D., Wang J. Y., Yu R. B., Wang D., Acta Chim. Sinica, 2021, 78(11), 1200—1212(毕如一, 毛丹, 王江艳, 于然波, 王丹. 化学学报, 2021, 78(11), 1200—1212) |
7 | Bi R. Y., Xu N., Ren H., Yang N. L., Sun Y. Y., Can A. M., Yu R. B., Wang D., Angew. Chem. Int. Ed., 2012, 132(12), 4895—4898 |
8 | Wang C., Wang J. Y., Hu W. P., Wang D., Chem. Res. Chinese Universities, 2020, 36(1), 68—73 |
9 | Yi T. F., Yang S. Y., Xie Y., J. Mater. Chem. A, 2015, 3(11), 5750—5777 |
10 | Deng Q., Fu Y., Zhu C., Yu Y., Small, 2019, 15(32), 1804884 |
11 | Yan L., Rui X., Chen G., Xu W., Zou G., Luo H., Nanoscale, 2016, 8(16), 8443—8465 |
12 | Ding H., Song Z., Zhang H., Zhang H., Li X., MT Nano, 2020, 11, 100082 |
13 | Griffith K. J., Harada Y., Egusa S., Ribas R. M., Monteiro R. S., Von Dreele R. B., Cheetham A. K., Cava R. J., Grey C. P., Goodenough J. B., Chem. Mater., 2020, 33(1), 4—18 |
14 | Hu L., Luo L., Tang L., Lin C., Li R., Chen Y., J. Mater. Chem. A, 2018, 6(21), 9799—9815 |
15 | Li Z. H., Feng X. M., Mi L. W., Zheng J. Y., Chen X. Y., Chen W. H., Nano Res., 2018, 11(8), 4038—4048 |
16 | Liu X., Liu G., Chen H., Ma J., Zhang R., J. Phys. Chem. Solids, 2017, 111, 8—11 |
17 | Shen S., Zhang S., Cao X., Deng S., Pan G., Liu Q., Wang X., Xia X., Tu J., Energy Storage Mater., 2020, 25, 695—701 |
18 | Lou S., Cheng X., Wang L., Gao J., Li Q., Ma Y., Gao Y., Zuo P., Du C., Yin G., J. Power Sources, 2017, 361, 80—86 |
19 | Cheong J. Y., Jung J. W., Youn D. Y., Kim C., Yu S., Cho S. H., Yoon K. R., Kim I. D., J. Power Sources, 2017, 360, 434—442 |
20 | Sun Y. G., Piao J. Y., Hu L. L., Bin D. S., Lin X. J., Duan S. Y., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2018, 140(29), 9070—9073 |
21 | Liu Z., Dong W., Wang J., Dong C., Lin Y., Chen I. W., Huang F., iScience, 2020, 23(1), 100767 |
22 | Lübke M., Sumboja A., Johnson I. D., Brett D. J. L., Shearing P. R., Liu Z., Darr J. A., Electrochim. Acta, 2016, 192, 363—369 |
23 | Liu X., Liu G., Liu Y., Sun R., Ma J., Guo J., Hu M., Dalton Trans., 2017, 46(33), 10935—10940 |
24 | Han X., Russo P. A., Goubard⁃Bretesché N., Patanè S., Santangelo S., Zhang R., Pinna N., Adv. Energy Mater., 2019, 9(42), 1902813 |
25 | Lim E., Jo C., Kim H., Kang K., Yoon S., Lee J., ACS Nano, 2015, 9(7), 7497—7505 |
26 | Cheong J. Y., Youn D. Y., Kim C., Jung J. W., Ogata A. F., Bae J. G., Kim I. D., Electrochim. Acta, 2018, 269, 388—396 |
27 | Kong F., Tao S., Qian B., Gao L., Ceram. Int., 2018, 44(18), 23226—23231 |
28 | Deng Q., Li M., Wang J., Jiang K., Hu Z., Chu J., Nanotechnology, 2018, 29(18), 185401 |
29 | Kong L., Zhang C., Zhang S., Wang J., Cai R., Lv C., Qiao W., Ling L., Long D., J. Mater. Chem. A, 2014, 2(42), 17962—17970 |
30 | Deng B., Lei T., Zhu W., Xiao L., Liu J., Adv. Funct. Mater., 2018, 28(1), 1704330 |
31 | Jiao Y. Z., Zhang H. T., Zhang H. L., Liu A., Liu Y. X., Zhang S. J., Nano Res., 2018, 11(9), 4673—4685 |
32 | He S. R., Zou J. P., Chen L. B., Chen Y. J., Rare Met., 2021, 40, 374—382 |
33 | Sun H. T., Mei L., Liang J. F., Zhao Z. P., Lee C., Fei H. L., Ding M., Lau J., Li M. F., Wang C., Xu X., Hao G. L., Papandrea B., Shakir I., Dunn B., Huang Y., Duan X. F., Science, 2017, 356(6338), 599—604 |
34 | Kong L., Zhang C., Wang J., Qiao W., Ling L., Long D., ACS Nano, 2015, 9(11), 11200—11208 |
35 | Fu Q., Li R., Zhu X., Liang G., Luo L., Chen Y., Lin C., Zhao X. S., J. Mater. Chem. A, 2019, 7(34), 19862—19871 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. |
[3] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[4] | HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3547. |
[5] | RONG Hua, WANG Chungang, ZHOU Ming. Synthesis and Electrochemical Performance of FeS2 Microspheres as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(3): 447. |
[6] | FANG Liang,DING Xiaoli,SONG Yun,LIU Dongming,LI Yongtao,ZHANG Qingan. Effect of Morphological Tuning on Electrochemical Performance of Perovskite LaCoO3 Anodes† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1456. |
[7] | LIN Weiguo,SUN Weihang,QU Zongkai,FENG Xiaolei,RONG Junfeng,CHEN Xu,YANG Wensheng. Preparation and Performance of Nano-porous Si/Graphite/C Composite Microspheres as Anode Material for Li-ion Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1216. |
[8] | WANG Qiuxian,LI Kai,YANG Beining,YUE Hongyun,YANG Shuting. Sodium Alginate Directed Synthesis of ZnFe2O4 with Micro-nano Structure and Its Performance in Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2039. |
[9] | LI Changqing,YANG Dongjie,XI Yuebin,QIN Yanlin,QIU Xueqing. Synthesis and Electrochemical Performance of Silica/Porous Lignin Carbon Composites as Anode Materials for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2725. |
[10] | XU Xiaomu, ZHANG Xingshuai, CHEN Zhining, WANG Jing, GUO Yuzhong, HUANG Ruian, WANG Jianhua. Preparation of a Disordered Mesoporous Silicon Nanocomposite and Its Slow Activation Behavior† [J]. Chem. J. Chinese Universities, 2017, 38(5): 713. |
[11] | SHI Nannan, JIANG Xue, ZHANG Ying, CHENG Kui, YE Ke, WANG Guiling, CAO Dianxue. Preparation and Performance of N-doped Carbon Coated Li4Ti5O12 as Anode Material for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(5): 981. |
[12] | YUE Hongyun, WANG Qiuxian, ZHANG Xue, HUA Shuang, MA Hua, YUE Dongyuan, YANG Shuting. Controllable Synthesis and Performance of Micro-nano Structure MFe2O4(M=Zn, Co) in Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(4): 745. |
[13] | YIN Hong, ZHOU Dan, CONG Lina, XIE Haiming, QIU Yongqing. MoO2/C Co-coated Si/graphite Composite as Anode Materials for Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1990. |
[14] | SHI Huimin, WANG Hui, YIN Jinwei, ZHU Qingyun, WU Ping, Tang Yawen, Zhou Yiming, Lu Tianhong. Preparation and Lithium Storage Performance of MWCNT@SiO2 Coaxial Nanocables† [J]. Chem. J. Chinese Universities, 2015, 36(1): 175. |
[15] | FENG Hong-Bin, WEN Zhen-Hai, LI Jing-Hong*. Hydrothermal-template Route to Carbon Nanotubes and Its Application in Lithium-ion Battery [J]. Chem. J. Chinese Universities, 2010, 31(3): 588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||