Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220039.doi: 10.7503/cjcu20220039
• Articles:Inorganix Chemistry • Previous Articles Next Articles
ZHAO Sheng1,2, HUO Zhipeng1(), ZHONG Guoqiang1, ZHANG Hong1, HU Liqun1
Received:
2022-01-15
Online:
2022-06-10
Published:
2022-03-20
Contact:
HUO Zhipeng
E-mail:zhipeng.huo@ipp.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHAO Sheng, HUO Zhipeng, ZHONG Guoqiang, ZHANG Hong, HU Liqun. Preparation of Modified Gadolinium/Boron/Polyethylene Nanocomposite and Its Radiation Shielding Performance for Neutron and Gamma-ray[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220039.
Material | Young’s modulus/MPa | Yield strength/MPa | Tensile stress/MPa | Elongation at break(%) |
---|---|---|---|---|
HDPE | 511.39 | 5.40 | 13.23 | 13.5 |
nanoGd2O3/B4C/HDPE | 1281.78 | 8.12 | 15.37 | 8.2 |
M?nanoGd2O3/B4C/HDPE | 1357.90 | 9.26 | 17.40 | 8.8 |
Table 1 Results of tensile stress test for three kinds of materials
Material | Young’s modulus/MPa | Yield strength/MPa | Tensile stress/MPa | Elongation at break(%) |
---|---|---|---|---|
HDPE | 511.39 | 5.40 | 13.23 | 13.5 |
nanoGd2O3/B4C/HDPE | 1281.78 | 8.12 | 15.37 | 8.2 |
M?nanoGd2O3/B4C/HDPE | 1357.90 | 9.26 | 17.40 | 8.8 |
Material shape & size | Required thickness of 50% shielding/cm | Required thickness of 80% shielding/cm | Σ/cm-1 | HVL/cm | R2 |
---|---|---|---|---|---|
Circle( | 7.0 | 17.5 | 0.214 | 7.2 | 0.973 |
Circle( | 5.0 | 12.7 | 0.287 | 5.0 | 0.990 |
Square(15 cm×15 cm) | 3.0 | 7.5 | 0.332 | 3.1 | 0.949 |
Square(15 cm×15 cm, SuperMC) | 2.3 | 5.7 | 0.395 | 2.3 | 0.972 |
Table 2 Neutron shielding parameters of real measured data and SuperMC simulated results*
Material shape & size | Required thickness of 50% shielding/cm | Required thickness of 80% shielding/cm | Σ/cm-1 | HVL/cm | R2 |
---|---|---|---|---|---|
Circle( | 7.0 | 17.5 | 0.214 | 7.2 | 0.973 |
Circle( | 5.0 | 12.7 | 0.287 | 5.0 | 0.990 |
Square(15 cm×15 cm) | 3.0 | 7.5 | 0.332 | 3.1 | 0.949 |
Square(15 cm×15 cm, SuperMC) | 2.3 | 5.7 | 0.395 | 2.3 | 0.972 |
Material shape & size | The required thickness of 50% shielding/cm | The required thickness of 70% shielding/cm | μ/cm-1 | μm/(cm2/g) | HVL/cm | R2 |
---|---|---|---|---|---|---|
Circle( | 9.5 | 15.0 | 0.072 | 0.057 | 9.6 | 0.996 |
Circle(d=10 cm, SuperMC) | 6.5 | 11.5 | 0.105 | 0.083 | 6.6 | 0.998 |
Square(15 cm×15 cm) | 7.8 | 13.5 | 0.088 | 0.070 | 7.9 | 0.993 |
Square(15 cm×15 cm, SuperMC) | 6.0 | 10.7 | 0.112 | 0.089 | 6.2 | 0.998 |
Table 3 Gamma-ray shielding parameters of the real measured data and SuperMC simulated results*
Material shape & size | The required thickness of 50% shielding/cm | The required thickness of 70% shielding/cm | μ/cm-1 | μm/(cm2/g) | HVL/cm | R2 |
---|---|---|---|---|---|---|
Circle( | 9.5 | 15.0 | 0.072 | 0.057 | 9.6 | 0.996 |
Circle(d=10 cm, SuperMC) | 6.5 | 11.5 | 0.105 | 0.083 | 6.6 | 0.998 |
Square(15 cm×15 cm) | 7.8 | 13.5 | 0.088 | 0.070 | 7.9 | 0.993 |
Square(15 cm×15 cm, SuperMC) | 6.0 | 10.7 | 0.112 | 0.089 | 6.2 | 0.998 |
1 | Shang Y., Yang G., Su F., Shen C., Compos. Commun, 2020, 19,147—153 |
2 | Alsayed Z, Badawi M. S., Awad R., Thabet A. A., Phys. Scripta., 2020, 95(8), 853—867 |
3 | Nambiar S., Yeow J., El⁃Khatib A. M., ACS. Appl. Mater. Inter., 2012, 4(11), 5717—5726 |
4 | Soltani Z., Beigzadeh A., Ziaie F., Asadi E., Radiat. Phys. Chem., 2016, 126, 182—187 |
5 | More C. V., Alsayed Z., Badawi M. S., Thabet A. A., Pawar P. P., Environ. Chem. Lett., 2021, 19(3), 2057—2090 |
6 | Cherkashina N. I., Pavlenko V. I., Noskov A. V., Radiat. Phys. Chem., 2019, 159, 111—117 |
7 | Darwish A. A., Hassan M. H., Mandour M., Maarouf A. A., Comp. Mater. Sci., 2018, 156, 142—147 |
8 | Abdelaziz M. M., Gwaily S. E., Makarious A. S., Abdo A. E. S., Polym. Degrad. Stabil., 1995, 50(2), 235—240 |
9 | Akkurt I., Basyigit C., Kilincarslan S., Prog. Nucl. Energ., 2005, 46(1), 1—11 |
10 | Rammah Y. S., Olarinoye I. O., El⁃Agawany F. I., El⁃Adawy A., Ceram. Int., 2021, 47(2), 2547—2556 |
11 | Samia B., Hotc D., Ceram. Int., 2019, 45(17), 23561—23571 |
12 | Lv J. X., Chen J. Y., Nucl. Power Energ., 1994, 4, 370—374 |
吕继新, 陈建延. 核动力工程, 1994, 4, 370—374 | |
13 | Gu Y. B., Hu Y. H., Du L., Deng S. F., Zhou Y., Ru L. A., Chem. J. Chinese Universities, 2017, 38(9), 1670—1677 |
顾渊博, 扈艳红, 杜磊, 邓诗峰, 周燕, 汝凌傲. 高等学校化学学报, 2017, 38(9), 1670—1677 | |
14 | Fereiduni E., Ghasemi A., Elbestawi M., Jadhav S. D., Mater. Lett., 2021, 296, 1299—1307 |
15 | Chen H. S., Wang W. X., Li Y. L., Zhang P., Nie H. H., Wu Q. C., J. Alloy. Compd., 2015, 632, 23—29 |
16 | Zhang P., Jia C., Li J., Wang W. X., Mater. Lett., 2020, 276, 1280—1293 |
17 | İrim S. G., Wis A. A., Keskin M. A., Baykara O., Ozkoc G., Avci A., Dogru M., Karakoc M., Radiat. Phys. Chem., 2018, 144, 434—443 |
18 | Baykara O., İrim S. G., Wis A. A., Keskin M. A., Ozkoc G., Avc A., Dogru M., Polym. Advan. Technol., 2020, 31(11), 2466—2479 |
19 | Donzella A., Bonomi G., Giroletti E., Zenoni A., Radiat. Phys. Chem., 2012, 81(4), 414—420 |
20 | Biswas R., Sahadath H., Mollah A. S., Huq M. F., J. Radiat. Res. Appl. Sc., 2016, 9(1), 26—34 |
21 | Al⁃Buriahi M. S., Sayyed M. I., Al⁃Hadeethi Y., Ceram. Int., 2020, 46(9), 13622—13629 |
22 | Eke C., Boztosun I., J. Radioanal. Nucl. Ch., 2014, 301(1), 103—108 |
23 | Blaauw M., Ucl. Sci. Eng., 1996, 124(3), 431—435 |
24 | Guay⁃Bégin A. A., Chevallier P., Faucher L., Turgeon S., Fortin M. A., Langmuir, 2012, 28(1), 774—782 |
25 | Gong L. X., Zhou Z. F., Wang S. M., Wang B., J. Appl. Polym. Sci., 2013, 129(3), 1212—1217 |
26 | Ni W. S., Wu S. P., Ren Q., Chem. Eng. J., 2013, 214, 272—277 |
27 | Zhu Q., Zhou H. L., Song Y. X., Chang Z. D., Li W. J., Int. J. Min. Met. Mater., 2017, 24(2), 208—215 |
28 | Wang H. Y, Yao X. D, Sui G. X, Yin L. M., Wang L. H., J. Mater. Sci. Technol., 2015, 31(2), 164—170 |
29 | Ochiai S., Uehara T., Osamura K., J. Mater. Sci., 1986, 21(3), 1020—1026 |
30 | Gao J. M., Yang Y., Lei T., Wang J., Liu J., Zhang J. M., J. Inorg. Mater., 2020, 36(1), 36—42 |
31 | Gu J. W., Zhang Q. Y., Dang J., Zhang J. P., Yang Z. Y., Polym. Eng. Sci., 2010, 49(5), 1030—1034 |
32 | Hajek M., Suarez R. C., Radiat. Prot. Dosim., 2016, 170(4), 265—268 |
33 | Clark J. K., Yannello V., Samarakoon A. M., Ross C., Uible M. C., Garlea V. O., Shatruk M., J. Phys. Chem. C, 2021, 125(29), 16183—16190 |
34 | Tokuuye K., Tokita N., Akine Y., Nakayama H., Sakurai Y., Kobayashi T., Kanda K., Strahlenther. Onkol., 2000, 176(2), 81—83 |
35 | Mastromarco M., Manna A., Aberle O., Eur. Phys. J. A, 2019, 55(453), 45—59 |
[1] | LIU Shuwei, JIN Hao, YIN Wanzhong, ZHANG Hao. Gemcitabine/polypyrrole Composite Nanoparticles for Chemo-photothermal Combination Ovarian Cancer Therapy [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220345. |
[2] | YU Pengdong, GUAN Xinghua, WANG Dongdong, XIN Zhirong, SHI Qiang, YIN Jinghua. Preparation and Properties of Novel Optical and Thermal Dual Response Shape Memory Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220085. |
[3] | ZHAO Junyu, WANG Chunbo, WANG Chengyang, ZHANG Ke, CONG Bing, YANG Lan, ZHAO Xiaogang, CHEN Chunhai. Preparation and Performance of Thermally Conductive Expanded Graphite/Polyetherimide Composites [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210800. |
[4] | ZHAO Mengyang, HUANG Ziyang. Preparation and in vitro Bioactivity of HA/CuO/SrCO3 Gradiently Composite Coating [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210644. |
[5] | CHU Yao, WANG Shuo, ZHANG Zinuo, WANG Yibo, CAI Yibing. Preparation and Properties of Cu Particles Loaded Foam-based Phase Change Composites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210619. |
[6] | ZHOU Ning, TANG Xiaohua, CAO Hong, ZHA Fei, LI Chun, XIE Chunyan, XU Mingping, SUN Yige. Preparation, Characterization and Degradation to BPA of Pomegranate-like Gel Microsphere Entrapmented Laccase [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210705. |
[7] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[8] | ZHANG Chi, SUN Fuxing, ZHU Guangshan. Synthesis, N2 Adsorption and Mixed-matrix Membrane Performance of Bimetal Isostructural CAU-21 [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210578. |
[9] | GAO Xiaole, WANG Jiaxin, LI Zhifang, LI Yanchun, YANG Donghua. Synthesis of NiOx-ZSM-5 Composite Materials and Its Electrocatalytic Hydrogen Evolution Performance in Microbial Electrolysis Cell [J]. Chem. J. Chinese Universities, 2021, 42(9): 2886. |
[10] | LI Zhanfeng, LIU Benxue, LIU Xiaochan, WANG Xinqiang, ZHANG Jing, YU Shimo, ZHAO Xinfu, ZHANG Xin’en, YI Xibin. Mechanism of the Removal of Acetylacetone Ligands in Zirconia Wet Gel and Fabrication of Zirconia Aerogel Composites [J]. Chem. J. Chinese Universities, 2021, 42(9): 2904. |
[11] | XU Xiaolong, FANG Lining, LIU Changyu, LIU Minchao, JIA Jianbo. Preparation of Z-type g-C3N4/Pt/TiO2 Nanotube Array Composite Electrode and Its Performance of Photoelectric Oxidation of Methanol [J]. Chem. J. Chinese Universities, 2021, 42(9): 2926. |
[12] | ZHAO Lingyun, HUANG Hanxiong, LUO Duyu, SU Fengchun. Effect of Flexibility of Composites on Performances of Sensors with Micro-structured Inverted Pyramid Arrays [J]. Chem. J. Chinese Universities, 2021, 42(9): 2953. |
[13] | WEI Minmin, YUAN Ze, LU Min, MA Hui, XIE Xiaoji, HUANG Ling. Recent Advances in Lanthanide Doped Upconversion Nanoparticle-Metal Organic Framework Composites [J]. Chem. J. Chinese Universities, 2021, 42(8): 2313. |
[14] | LIU Simei, LIU Weihua, LU Manli, ZHANG Wenli, SHEN Rongfang, WANG Mouhua. Evolution of the Radicals in γ-Rays Irradiated Medical Grade Ultra-high Molecular Weight Polyethylene [J]. Chem. J. Chinese Universities, 2021, 42(8): 2602. |
[15] | TANG Ding, ZHONG Shuiping. Preparation and Photoelectrochemical Performance of Bi1-xFexVO4 Thin Film Photoanodes [J]. Chem. J. Chinese Universities, 2021, 42(8): 2509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||