Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (2): 359.doi: 10.7503/cjcu20170116
• Physical Chemistry • Previous Articles Next Articles
ZHANG Shupeng1, CHENG Youxing2, REN Lei2, WEN Kai1, LÜ Xiaolin2, YE Shefang2,*(), ZHOU Xi2,*()
Received:
2017-02-25
Online:
2018-02-10
Published:
2018-01-11
Contact:
YE Shefang,ZHOU Xi
E-mail:yeshefang@xmu.edu.cn;xizhou@xmu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Shupeng, CHENG Youxing, REN Lei, WEN Kai, LÜ Xiaolin, YE Shefang, ZHOU Xi. Reparation and Photothermal Properties of Prussian Blue Nanoparticles with Different Morphologies†[J]. Chem. J. Chinese Universities, 2018, 39(2): 359.
Fig.1 SEM(A—D, G, H) and TEM(E, F) images of PB nanoparticles(NPs) with different morphologies(A) Cube; (B) rectangular cube; (C) sphere; (D) rod; (E) core-shell; (F) hollow; (G) spindle; (H) polyhedron.
Fig.3 UV-Vis spectra of PB NPs with different morphologies(A) Before normalization; (B)after normalization. a. Polyhedron; b. spindle; c. hollow;d. rectangular cube; e. sphere; f. rod; g. cube; h. core-shere.
Fig.4 Temperature-rising curves of PB NPs under vary conditions(A) Different semiconductor excitation light source; (B)different laser power density; (C) different concentrations of PB NPs.
Morphology | Particle size/nm | 1015 Volume/cm3 | 10-13εPB | A | 10-13ε |
---|---|---|---|---|---|
Cube | 100(side length) | 1 | 5.418A | 0.3475 | 1.8 |
Rectangular cube | 100 | 1 | 5.418A | 0.4747 | 2.57 |
Sphere | 100(diameter) | 0.52 | 2.8A | 0.1696 | 0.47 |
Rod | 3000/200/10(long/wide/high) | 6 | 32.5A | 0.3083 | 10.02 |
Core-shell | 200(length) | 8 | 43.3A | 0.5709 | 24.72 |
Hollow | 100(length) | 0.03 | 0.1A | 0.0719 | 0.01 |
Spindle | 500(long axis) | 5.45 | 29.5A | 0.1503 | 4.43 |
Polyhedron | 250(hexagon length) | 40.6 | 219.7A | 0.4350 | 95.57 |
Table 1 Size, volume, absorption value and molar extinction coefficient of different PB NPs
Morphology | Particle size/nm | 1015 Volume/cm3 | 10-13εPB | A | 10-13ε |
---|---|---|---|---|---|
Cube | 100(side length) | 1 | 5.418A | 0.3475 | 1.8 |
Rectangular cube | 100 | 1 | 5.418A | 0.4747 | 2.57 |
Sphere | 100(diameter) | 0.52 | 2.8A | 0.1696 | 0.47 |
Rod | 3000/200/10(long/wide/high) | 6 | 32.5A | 0.3083 | 10.02 |
Core-shell | 200(length) | 8 | 43.3A | 0.5709 | 24.72 |
Hollow | 100(length) | 0.03 | 0.1A | 0.0719 | 0.01 |
Spindle | 500(long axis) | 5.45 | 29.5A | 0.1503 | 4.43 |
Polyhedron | 250(hexagon length) | 40.6 | 219.7A | 0.4350 | 95.57 |
Fig.5 Rising curve of vary morphology at the same concentration(A), thermal infrared image at different time point(B) and absorption cross-sectional area of particle(C)a. H2O; b. cube; c. polyhedron; d. hollow; e. spindle; f. rectangular cube; g. sphere; h. rod; i. core-shell.
Sample | A808 | ΔTmax/℃ | 1 | 1-1 | η |
---|---|---|---|---|---|
Cube | 0.93 | 22.70 | 0.12 | 0.88 | 25.8/K-1.14 |
Rectangular cube | 0.53 | 16.90 | 0.29 | 0.71 | 23.8/K-1.41 |
Sphere | 0.92 | 10.30 | 0.12 | 0.88 | 11.7/K-1.14 |
Rod | 0.94 | 19.50 | 0.11 | 0.89 | 21.9/K-1.12 |
Core-shell | 0.95 | 5.40 | 0.11 | 0.89 | 6.07/K-1.12 |
Hollow | 0.82 | 5.30 | 0.15 | 0.85 | 6.2/K-1.25 |
Spindle | 0.52 | 5.60 | 0.30 | 0.70 | 8/K-1.43 |
Polyhedron | 0.96 | 16.50 | 0.11 | 0.89 | 18.54/K-1.12 |
Table 2 Specific value of PB NPs with different morphologies
Sample | A808 | ΔTmax/℃ | 1 | 1-1 | η |
---|---|---|---|---|---|
Cube | 0.93 | 22.70 | 0.12 | 0.88 | 25.8/K-1.14 |
Rectangular cube | 0.53 | 16.90 | 0.29 | 0.71 | 23.8/K-1.41 |
Sphere | 0.92 | 10.30 | 0.12 | 0.88 | 11.7/K-1.14 |
Rod | 0.94 | 19.50 | 0.11 | 0.89 | 21.9/K-1.12 |
Core-shell | 0.95 | 5.40 | 0.11 | 0.89 | 6.07/K-1.12 |
Hollow | 0.82 | 5.30 | 0.15 | 0.85 | 6.2/K-1.25 |
Spindle | 0.52 | 5.60 | 0.30 | 0.70 | 8/K-1.43 |
Polyhedron | 0.96 | 16.50 | 0.11 | 0.89 | 18.54/K-1.12 |
[1] | Jaque D., Maestro L. M., Del Rosal B., Haro-Gonzalez P., Benayas A., Plaza J. L., Martin E. R., Sole J. G., Nanoscale,2014, 6(16), 9494—9530 |
[2] | Liu Z., Macharia D. K., Chen W., Yu N., Yang C., Hu J., Chen Z., Rev. Nanosci. Nanotech., 2016, 5(2), 93—118 |
[3] | Liu H., Chen D., Li L., Liu T., Tan L., Wu X., Tang F., Angew. Chem., 2011, 123(4), 921—925 |
[4] | Robinson J. T., Tabakman S. M., Liang Y., Wang H., Sanchez C. H., Vinh D., Dai H., J. Am. Chem. Soc., 2011, 133(17), 6825—6831 |
[5] | Kam N. W. S., O'Connell M., Wisdom J. A., Dai H., Proc. Natl. Acad. Sci. USA,2005, 102(33), 11600—11605 |
[6] | Zhang C., Fu Y. Y., Zhang X., Yu C., Zhao Y., Sun S. K., Dalton Trans., 2015, 44(29), 13112—13118 |
[7] | Fu G., Liu W., Feng S., Yue X., Chem. Commun., 2012, 48(94), 11567—11569 |
[8] | Shokouhimehr M., Soehnlen E. S., Hao J., Griswold M., Flask C., Fan X., Basilion J. P., Basu S., Huang S. D., J. Mater. Chem., 2010, 20(25), 5251—5259 |
[9] | Cao L., Liu Y., Zhang B., Lu L., ACS Appl. Mater. Interf., 2010, 2(8), 2339—2346 |
[10] | Al Hammouri. F., Darwazeh G., Said A., Ghosh R. A., J. Med. Toxicol., 2011, 7(4), 306—311 |
[11] | Cai X., Gao W., Ma M., Wu M., Zhang L., Zheng Y., Chen H., Shi J., Adv. Mater., 2015, 27(41), 6536—6536 |
[12] | Han L. H., Li K. F., Chen Y. W., Chem. J. Chinese Universities, 2017, 38(5), 706—712 |
(韩林唤, 李凯丰, 陈艳伟. 高等学校化学学报, 2017,38(5), 706—712) | |
[13] | Xiao Z., Ye G., Liu Y., Chen S., Peng Q., Zuo Q., Ding L., Angew. Chem. Inter. Ed., 2012, 51(36), 9038—9041 |
[14] | Zhang L.Y., Chi Y.N., Shan G.Y., Chen Y.W., Liu N., Chem. J. Chinese Universities, 2016, 37(7), 1239—1244 |
(张龄月, 迟娅楠, 单桂晔, 陈艳伟, 刘娜. 高等学校化学学报, 2016,37(7), 1239—1244) | |
[15] | Dong S., Chen X., Zhang X., Cui G., Coord. Chem. Rev., 2013, 257(13), 1946—1956 |
[16] | Jacques S. L., Phy. Med. Biol., 2013, 58(11), 5007—5008 |
[17] | Tian Q., Jiang F., Zou R., Liu Q., Chen Z., Zhu M., Yang S., Wang J., Hu J., ACS Nano, 2011, 5(12), 9761—9771 |
[18] | Zarrouk S. J., Moon H., Geothermics,2014, 51, 142—153 |
[19] | Gallo A. B., Simes-Moreira J. R., Costa H. K. M., Santos M. M., Dos Santos E. M., Renew. Sustain. Energy Rev., 2016, 65, 800—822 |
[20] | Hou W., Cronin S. B., Adv. Funct. Mater., 2013, 23(13), 1612—1619 |
[21] | Homola J., Yee S. S., Gauglitz G., Sens. Actuat. B: Chem., 1999, 54(1), 3—15 |
[22] | Cao J., Sun T., Grattan K. T., Sens. Actuat. B: Chem., 2014, 195, 332—351 |
[23] | Wong C. L., Olivo M., Plasmonics,2014, 9(4), 809—824 |
[24] | Wu P., Han Y. P., Liu D. F., Acta Physica Sinica, 2005, 32(6), 2676—2679 |
(吴鹏, 韩一平, 刘德芳. 物理学报, 2005,32(6), 2676—2679) | |
[25] | Ghosh S. K., Pal T., Chem. Rev., 2007, 107(11), 4797—4862 |
[26] | Nehl C. L., Hafner J. H., J. Mater. Chem., 2008, 18(21), 2415—2419 |
[27] | Couture M, Zhao S. S., Masson J. F., Chem. Chem., 2013, 15(27), 11190—11216 |
[28] | Kochuveedu S. T., Kim D. H., Nanoscale,2014, 6(10), 4966—4984 |
[29] | Cobley C. M., Campbell D. J., Xia Y., Adv. Mater., 2008, 20(4), 748—752 |
[30] | Eustis S., El-Sayed M. A., Chem. Soc. Rev., 2006, 35(3), 209—217 |
[31] | Shi F., Fang H., Xu W., Chem. Res. Chinese Universities, 2016, 32(1), 28—34 |
[32] | Kong C., Han Y. X., Hou L. J., Chen D. P., Wu B. W., Chem. Res. Chinese Universities, 2017, 33(5), 816—821 |
[1] | LIU Shuwei, JIN Hao, YIN Wanzhong, ZHANG Hao. Gemcitabine/polypyrrole Composite Nanoparticles for Chemo-photothermal Combination Ovarian Cancer Therapy [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220345. |
[2] | FAN Xiaohui, WANG Yang, YANG Yuanyuan, ZHANG Yuhong. Preparation and Properties of Gold Nanocages/Hyaluronic Acid Core-shell Nanocarriers with pH/Enzyme/ Photothermal Multiple Responses [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210855. |
[3] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[4] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[5] | XU Huan, KE Lyu, TANG Mengke, SHANG Han, XU Wenxuan, ZHANG Zilin, FU Yanan, HAN Guangdong, CUI Jinsheng, YANG Haoran, GAO Jiefeng, ZHANG Shenghui, HE Xinjian. In⁃situ Liquid Exfoliation of Montmorillonite Nanosheets in Poly(lactic acid) to Resist Oxygen Permeation [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220316. |
[6] | LIANG Pingping, LIU Shuai, LI Hongyi, DING Yadan, WEN Xiaokun, LIU Junping, HONG Xia. Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2689. |
[7] | WANG Ye, ZHANG Xiaosi, SUN Lijing, LI Bing, LIU Lin, YANG Miao, TIAN Peng, LIU Zhongyi, LIU Zhongmin. Morphology Control of SAPO Molecular Sieves under the Assistance of Organosilane [J]. Chem. J. Chinese Universities, 2021, 42(3): 683. |
[8] | LU Feng, GONG Yi, ZHAO Ting, ZHAO Ning, JU Wenwen, FAN Quli, HUANG Wei. Seedless Synthesis of Gold Nanorods with Narrow Absorption Using Binary Surfactant Mixture [J]. Chem. J. Chinese Universities, 2021, 42(3): 700. |
[9] | LU Man,SONG Chunmei,WAN Bo. Thixotropic Behavior of Hydrophobically Modified Ethoxylated Urethane-thickened Waterborne Latex [J]. Chem. J. Chinese Universities, 2020, 41(5): 1108. |
[10] | WU Fengren,LIU Yongjia,LU Xuemin,ZHU Bangshang. Controllable Preparation of Polydopamine Modified Gold Nanoflowers and Its Application in Photothermal Therapy [J]. Chem. J. Chinese Universities, 2020, 41(3): 465. |
[11] | SHI Xiaoyu, WANG Songmeng, LIU Lingyan, CHANG Weixing, LI Jing. Controllable Synthesis of Amphiphilic Block Copolymer PMnEOS-b-PAA and co-Assembly Morphologies of PMDEOS-b-PAA/PS-b-PAA [J]. Chem. J. Chinese Universities, 2020, 41(11): 2545. |
[12] | SHAO Wei, LEE Jiyoung, LI Fangyuan, LING Daishun. Organic Small Molecule Nanoparticles for Phototheranostics [J]. Chem. J. Chinese Universities, 2020, 41(11): 2356. |
[13] | WANG Yue, GUO Xiaohong, ZHOU Guangdong, CHENG Tiexin. Effect of Alkyl Benzene Sulfonate Surfactant on Morphology and Structure of Calcium Silicate Hydrate † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1795. |
[14] | REN Wei, TIAN Ye, XING Lingli, YANG Yuexi, DING Tong, LI Xingang. K Promoted Nanosheets-like Hydrotalcite-derived CoAlO Metal Oxides for Catalytic Soot Combustion [J]. Chem. J. Chinese Universities, 2019, 40(8): 1670. |
[15] | YANG Jinge, LI Yujie, LU Di, CHEN Yufang, SUN Weiwei, ZHENG Chunman. Morphology Control and Lithium Storage Performance of Micro/nano Li-rich Cathode Material† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||