Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (7): 1418.doi: 10.7503/cjcu20190169
• Physical Chemistry • Previous Articles Next Articles
YAO Fengnan, LI Yu, FENG Wei*()
Received:
2019-03-20
Online:
2019-06-28
Published:
2019-07-09
Contact:
FENG Wei
E-mail:weifeng@tju.edu.cn
Supported by:
CLC Number:
TrendMD:
YAO Fengnan,LI Yu,FENG Wei. Synthesis and Electrochemical Performance of Carbon-coated FeF2 Nanocomposite†[J]. Chem. J. Chinese Universities, 2019, 40(7): 1418.
Fig.2 SEM images and EDS spectra(insets) of FeF3 before(A) and after(B) coating with carbon, TEM image(C), HRTEM image(D) of FeF2/C nanocomposite and HRTEM images of FeF2(E) and Fe3C(F)
Fig.5 Cyclic voltammograms(A), galvanostatic discharge/charge profiles in the first three cycles at 0.1C(B), cycling stability at 0.1C(C), energy density(D), rate capability(E) and electrochemical impedance spectra before and after cycling(F) of FeF2/C nanocompositeInset of (F) is equivalent circuit by EIS.
[1] | Wang B., Al Abdulla W., Wang D. L., Zhao X. S., Energy Environ. Sci., 2015, 8(3), 869—875 |
[2] | Ma J., Hu P., Cui G. L., Chen L. Q., Chem. Mater., 2016, 28(11), 3578—3606 |
[3] | Wu F., Yushin G., Energy Environ. Sci., 2017, 10(2), 435—459 |
[4] | Hua X., Robert R., Du L.S., Wiaderek K. M., Leskes M., Chapman K. W., Chupas P. J., Grey C. P., J. Phys. Chem. C, 2014, 118(28), 15169—15184 |
[5] | Wang X., Gu W., Lee J.T., Nitta N., Benson J., Magasinski A., Schauer M. W., Yushin G., Small, 2015, 11(38), 5164—5173 |
[6] | Guntlin C.P., Zund T., Kravchyk K. V., Worle M., Bodnarchuk M. I., Kovalenko M. V., J. Mater. Chem. A, 2017, 5(16), 7383—7393 |
[7] | Li L., Meng F., Jin S., Nano Lett., 2012, 12(11), 6030—6037 |
[8] | Zhai J.R., Lei Z. Y., Rooney D., Wang H. G., Sun K. N., J. Power Sources, 2018, 396, 371—378 |
[9] | Liu L., Guo H.P., Zhou M., Wei Q. L., Yang Z. H., Shu H. B., Yang X. K., Tan J. L., Yan Z. C., Wang X. Y., J. Power Sources, 2013, 238, 501—515 |
[10] | Kim S. W., Seo D. H., Gwon H., Kim J.,Kang K., Adv. Mater., 2010, 22(46), 5260—5264 |
[11] | Liu J., Wan Y.L., Liu W., Ma Z. S., Ji S. M., Wang J. B., Zhou Y. C., Hodgson P., Li Y. C, J. Mater. Chem. A, 2013, 1(6), 1969—1975 |
[12] | Song H.W., Yang G. Z., Cui H., Wang C. X., J. Mater. Chem. A, 2015, 3(39), 19832—19841 |
[13] | Ma D. l ., Cao Z. Y., Wang H. G., Huang X. L., Wang L. M., Zhang X. B., Energy Environ. Sci., 2012, 5(9), 8538—8542 |
[14] | Li Y., Yao F.N., Cao Y., Yang H. Y., Feng Y. Y., Feng W., Electrochim. Acta, 2017, 253, 545—553 |
[15] | Li H., Balaya P., Maier J., J. Electrochem. Soc., 2004, 151(11), A1878—A1885 |
[16] | Ming H., Ming J., Kwak W.J., Yang W. J., Zhou Q., Zheng J. W., Sun Y. K., Electrochim. Acta, 2015, 169, 291—299 |
[17] | Prakash R., Mishra A.K., Roth A., Kuebel C., Scherer T., Ghafari M., Hahn H., Fichtner M., J. Mater. Chem., 2010, 20(10), 1871—1876 |
[18] | Yang Y., Fan X., Casillas G., Peng Z., Ruan G., Wang G., Yacaman M. J., Tour J. M., ACS Nano, 2014, 8(4), 3939—3946 |
[19] | Li J., Fu L.C., Xu Z. W., Zhu J. J., Yang W. L., Li D. Y., Zhou L. P., Electrochim. Acta, 2018, 281, 88—98 |
[20] | Song Z.Y., Zhu D. Z., Li L. C., Chen T., Duan H., Wang Z. W., Lv Y. K., Xiong W., Liu M. X., Gan L. H., J. Mater. Chem. A, 2019, 7(3), 1177—1186 |
[21] | Xue D. F., Zhu D. Z., Xiong W., Cao T. C.,Wang Z. W., Lv Y. K., Li L. C., Liu M. X., Gan L. H., ACS Sustainable Chem. Eng., 2019, 7(7), 7024—7034 |
[22] | Zhang Y.L., Wang L., Li J. J., Wen L., He X. M., J. Alloys Compd., 2014, 606, 226—230 |
[23] | Reddy M. A., Breitung B., Chakravadhanula V. S. K., Wall C.,Engel M., Kuebel C., Powell A. K., Hahn H., Fichtner M., Adv. Energy Mater., 2013, 3(3), 308—313 |
[24] | Parkinson M.F., Ko J. K., Halajko A., Sanghvi S., Amatucci G. G., Electrochim. Acta, 2014, 125, 71—82 |
[25] | Li L., Jacobs R., Gao P., Gan L., Wang F., Morgan D., Jin S., J. Am. Chem. Soc., 2016, 138(8), 2838—2848 |
[26] | Fan X.L., Zhu Y. J., Luo C., Gao T., Suo L. M., Liou S. C., Xu K., Wang C. S., J. Power Sources, 2016, 307, 435—442 |
[27] | Rangan S., Thorpe R., Bartynski R.A., Sina M., Cosandey F., Celik O., Mastrogiovann D. D. T., J. Phys. Chem. C, 2012, 116(19), 10498—10503 |
[28] | Zhou J.S., Zhang D., Zhang X. T., Song H. H., Chen X. H., ACS Appl. Mater. Interfaces, 2014, 6(23), 21223—21229 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[3] | ZHANG Wenmeng, LI Mengqin, HOU Zhen, CHEN Dongyang. Synthesis and Coating Properties of Carboxylated Fluorinated Poly(arylene ether)s [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210604. |
[4] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[5] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[6] | GAO Xiaole, WANG Jiaxin, LI Zhifang, LI Yanchun, YANG Donghua. Synthesis of NiOx-ZSM-5 Composite Materials and Its Electrocatalytic Hydrogen Evolution Performance in Microbial Electrolysis Cell [J]. Chem. J. Chinese Universities, 2021, 42(9): 2886. |
[7] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[8] | YI Conghua, SU Huajian, QIAN Yong, LI Qiong, YANG Dongjie. Preparation of Lignin Nanocarbon and Its Performance as a Negative Electrode for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(6): 1807. |
[9] | MAO Eryang, WANG Li, SUN Yongming. Advances in Alloy-based High-capacity Li-containing Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1552. |
[10] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[11] | ZHANG Huishuang, GAO Yanxiao, WANG Qiuxian, LI Xiangnan, LIU Wenfeng, YANG Shuting. High-low Temperature Properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 Cathode Material by Hydrothermal Synthesis with CTAB Assisted [J]. Chem. J. Chinese Universities, 2021, 42(3): 819. |
[12] | SUN Quanhu, LU Tiantian, HE Jianjiang, HUANG Changshui. Advances in the Study of Heteratomic Graphdiyne Electrode Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 366. |
[13] | ZHOU Zhan, MA Lufang, TAN Chaoliang. Preparation of Layered (NH4)2V6O16·H2O Nanosheets as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(2): 662. |
[14] | GONG Shanshan, WU Tong, WANG Guange, HUANG Qing, SU Yuefeng, WU Feng. Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium⁃ion Battery Cathode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3151. |
[15] | XIANG Houzheng, XIE Hongxiang, LI Wenchao, LIU Xiaolei, MAO Aiqin, YU Haiyun. Synthesis and Electrochemical Performance of Spinel-type High-entropy Oxides [J]. Chem. J. Chinese Universities, 2020, 41(8): 1801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||